Управление передней стойкой шасси самолета. Доработка стоек шасси

Главная / Трансмиссия
0

Шасси самолета предназначено для стоянки и передвижения по земле. Оно обычно снабжается амортизаторами, поглощающими энергию ударов при посадке самолета и при передвижении его по земле, и тормозами, обеспечивающими торможение самолета при пробеге и рулении. Помимо колесного шасси, самолеты могут быть оборудованы лыжами, поплавками (гидросамолеты), гусеницами (самолеты повышенной проходимости).

Сравнительная оценка различных схем шасси

Для устойчивого положения самолета на земле необходимы минимум три опоры. В зависимости от расположения главных и вспомогательных опор относительно центра тяжести самолета различают следующие основные схемы: с хвостовой опорой, с передней опорой и велосипедного типа. Самолеты, оснащенные шасси с хвостовой опорой, имеют главные опоры впереди центра тяжести самолета, расположенные симметрично относительно его продольной оси, а хвостовую опору - позади центра тяжести (рис. 72, а).

У самолета, оснащенного шасси с передней опорой, главные опоры (ноги) расположены позади центра тяжести самолета симметрично относительно его продольной оси; передняя опора расположена в плоскости симметрии самолета, впереди центра тяжести (рис. 72, б).

У самолетов с шасси велосипедного типа обычно центр тяжести находится примерно на равном расстоянии от колес или колесных тележек, которые располагаются в продольной плоскости самолета одно позади другого (рис. 72, в). Боковые опоры, расположенные на концах крыла, ударную нагрузку при посадке и взлете не воспринимают.


Шасси велосипедного типа применяются на скоростных самолетах, поскольку убирать шасси в тонкие крылья стало невозможным (шасси убирается в фюзеляж, а небольшие боковые опоры - в крыло).

Наибольшее распространение на современных самолетах получило трехопорное шасси с носовой опорой, что объясняется рядом преимуществ, которые получает самолет, оснащенный таким шасси.

К достоинствам указанной схемы шасси относятся:

возможность приземления на большей скорости (при этом посадка облегчается и делается более безопасной). Объясняется это тем, что носовая стойка предохраняет самолет от капотирования (заваливания на нос), что позволяет также более энергично тормозить колеса. Причем предотвращается и «козление» самолета, так как центр тяжести располагается впереди главных колес и при ударе главными колесами угол атаки и с у крыла уменьшаются;

горизонтальное положение оси фюзеляжа обеспечивает хороший обзор экипажу, создает удобства для пассажиров, облегчает загрузку самолета тяжелыми грузами, позволяет размещать реактивные двигатели горизонтально, при этом газовая струя не разрушает покрытия аэродрома; обеспечивает самолету хорошую устойчивость при пробеге и разбеге.

Вместе с тем схема шасси с передним колесом имеет недостатки: сложность передвижения по мягкому и вязкому грунту, так как «зарывается» переднее колесо, большая опасность при посадке с поврежденной передней ногой, большой вес конструкции, трудность обеспечения значительного объема в передней части фюзеляжа для уборки носового колеса.

Основные части и силовые схемы шасси

Основными частями ноги шасси являются: колеса (на главных опорах обычно тормозные), лыжи или гусеницы, амортизатор, боковые, задние или передние подкосы, замки, запирающие ногу в


выпущенном или убранном положенин, подъемник, обеспечивающий уборку и выпуск ноги.

Шасси неубирающегося типа, в настоящее время применяемое редко, подъемника и замков не имеет.

По конструктивно-силовым схемам шасси можно разделить на ферменные, балочные и ферменно-балочные.

Конструкцию ферменного шасси (рис. 75) образует пространственная ферма, к которой крепится ось колес. Стержни фермы, в число которых входит и амортизационная стойка, воспринимают усилия сжатия и растяжения. Несмотря на малый вес и конструктивную простоту, ферменное шасси в настоящее время применяется редко и только на самолетах малых скоростей, так как уборка та


кого шасси чрезвычайно затруднена.

Балочное шасси (рис. 76) представляет собой консольную балку с верхним концом, заделанным в конструкцию крыла или фюзеляжа. На нижнем конце балки крепится колесо или лыжа. Стойка шасси под действием силы реакции земли работает па сжатие и изгиб. Максимальный изгибающий момент будет в узле крепления, поэтому узел крепления стойки к самолету должен быть достаточно мощным.

Ферменно-балочное шасси (рис. 77) состоит из одной (одностоечное) или двух (двухстоечное) консольных балок, подкрепленных подкосами. Установка подкосов разгружает стойку от изгибающих моментов, боковой подкос - от момента, создаваемого боковой силой, а передний или задний - от момента силы, направленной вдоль оси самолета.

В современной авиации ферменно-балочные шасси получили наибольшее распространение.

Для самолетов с большим полетным весом серьезной проблемой становится проблема уменьшения удельной нагрузки на грунт, так как проходимость самолета по грунту обратно пропорциональна удельному давлению на опорную поверхность шасси. С увеличением числа колес шасси опорная поверхность увеличивается. Поэтому широкое применение получили шасси со спаренным креплением колес на тележке. Наибольшее распространение получили многоколесные тележки с числом колес от четырех до восьми и более. Встречаются самолеты, которые для увеличения проходимости шасси имеют несколько колес, расположенных вдоль фюзеляжа в один или два ряда.

Широкое применение в последние годы получило шасси с рычажной подвеской колес. У такого шасси ось колеса располагается не непосредственно на амортизационной стойке, а на конце вильчатого рычага (см. рис. 76), который к жесткой стойке прикреплен шарнирно.


С подвижной деталью амортизатора (его штоком) вильчатый рычаг соединяется также шарнирно с помощью шатуна. Благодаря шарнирному соединению амортизатор воспринимает только осевые нагрузки и изгиб штока амортизатора таким образом исключается. Рычажная подвеска позволяет амортизировать не только вертикальные, но и горизонтальные силы. За счет рычажной подвески можно значительно уменьшить потребный ход амортизатора и уменьшить высоту стоек шасси.

Шасси самолета может быть убирающимся в полете и неубираюшимся. Очевидно, что конструкция убирающегося шасси значительно сложнее неубирающегося, первое имеет также больший вес за счет механизмов подъема и выпуска как самих шасси, так и створок отсеков и люков, предназначенных для убранного шасси, замков и сигнализации убранного и выпущенного положений. В то же время аэродинамическое сопротивление самолета, совершающего полет с убранным шасси, уменьшается на 20-35% но сравнению с самолетом, шасси которого не убирается. Считают, что для самолетов, у которых удельная нагрузка на крыло превышает 100 кГ/м 2 , выгодно применять убирающееся шасси.

Шасси можно убрать в крыло, гондолы двигателей и в фюзеляж. Иногда для уборки главных ног шасси используются специальные гондолы, расположенные на крыле.

На самолетах с двумя - четырьмя двигателями, установленными на крыле, главные ноги шасси чаще всего убираются в отсеки гондол двигателей вперед или назад и реже вбок (в крыло). При «чистом» крыле, т. е. когда двигатели устанавливаются на фюзеляже и главные ноги крепятся на крыле, целесообразно ноги убирать в бок по размаху, в этом случае стойки убираются в крыло, а колеса- в ниши фюзеляжа. Хвостовые и передние ноги шасси, закрепленные в фюзеляже, убираются в его отсеки. Передние ноги желательно убирать в сторону, противоположную направлению уборки главных ног; например, если главные ноги убираются вперед, то передняя нога должна убираться назад, что обеспечивает наименьшее изменение центровки самолета при убранном и выпущенном шасси. Хвостовые опоры обычно убираются с незначительным перемещением по продольной оси и заметного влияния на изменение центровки самолета не оказывают. Механизмы уборки и выпуска шасси приводятся в действие гидравлическими, газовыми, электрическими и механическими приводами, для каждой ноги шасси предназначен самостоятельный силовой механизм.

Подкосы и фермы шасси

Лобовые и боковые нагрузки, действующие на ногу шасси, а также скручивающие моменты, которые возникают при разворотах самолета на земле, воспринимаются узлами крепления стойки к самолету и подкосами или фермами.

Подкосы изготавливаются из высококачественных стальных труб или штампованных профилей и реже - из легких сплавов. На концах подкосов привариваются ушки крепления к узлам самолета и к узлам стоек шасси. Некоторые подкосы делаются «ломающимися» для обеспечения уборки и выпуска ноги шасси. В таких подкосах для исключения их самопроизвольного складывания при выпущенном положении шасси в шарнир устанавливается замок. Для устранения динамического влияния лобовых нагрузок на колеса в конструкцию задних подкосов иногда включаются гасители продольных колебаний. Гаситель представляет собой цилиндр с поршнем двустороннего действия, удерживаемый пружиной или чаще сжатым газом в определенном положении. При лобовом ударе колеса пружина или газ в гасителе сжимается и дает возможность колесам отклониться назад. Жидкость, имеющаяся в гасителе, при этом перетекает из одной полости цилиндра в другую через калиброванное отверстие малых размеров и гасит энергию удара.

Фермы свариваются или собираются на болтах из стальных труб и реже из профилей. К фермам присоединяются узлы крепления к фюзеляжу или крылу, амортизационным стойкам, а в некоторых случаях - узлы для крепления подъемников, обеспечивающих уборку и выпуск шасси.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Стойки шасси на самолёте не только связывают через колёса (или
лыжи) летательный аппарат с поверхностью земли, но и выполняют
очень важную задачу – гасить удары и колебания при посадке,
взлёте и рулении на земле. Поэтому стойки шасси представляют
собой довольно сложную конструкцию, с подвижными деталями и
упругими элементами. Последними являются гидравлические или
пневмогидравлические амортизаторы и имеют очень заметную деталь
– шток. По требованиям герметичности шток отполирован и блестит,
как… зеркало. Достаточно посмотреть на экскаватор, там масса
гидроцилиндров с блестящими штоками, какой бы грязной и «убитой»
ни была сама машина.

Если на прототипе шток амортизатора не был закрыт гофрированным
чехлом (как, например, на МиГ-3), он очень заметен и, если
аккуратно имитирован, то этим здорово добавляет модели реализма
и зрелищности.

Когда речь идёт о покраске, то существует много хороших
красок-металликов, например, «металлическая» серия фирмы Testors,
краска «серебро» серии Супер фирмы Звезда. А если по вине
производителя деталь, имитирующая шток имеет не «совсем круглую»
форму в сечении? Тогда придется делать доработку. Или переделку,
если лечение «малой кровью» не даёт результата.

Нам понадобятся свёрла (вернее, набор свёрл различных диаметров),
не очень острая игла и очень острый нож, желательно, тисочки и
металлическая трубка подходящего диаметра, например, игла
медицинского шприца. Наборы прекрасных трубок выпускает фирма
Model Point, там диаметры есть на все случаи модельной жизни.

Отделяем стойку от литника.

Ножом удаляем
след стыка половинок пресс-формы и возможный облой.

Сначала либо
разрезаем, либо вовсе удаляем шарнир, т.н. двузвенник.

Если он даётся
отдельной деталью, просто пока его не приклеиваем. Отрезаем шток
не под самый «корень», т.е. не до того места, где начинается
корпус стойки, а оставляем ~0,5 мм бывшего штока с каждой
стороны.



Аккуратно,
чтобы не деформировать, зажимаем стойку в тиски и иглой отмечаем
центр будущего отверстия под шток. Говоря по слесарному,
накерниваем.

Теперь
начинается самый интересный, но и самый ответственный этап –
сверление. Начинаем сверлом, с диаметром вдвое меньшим нужного,
то есть, делаем центровочное отверстие.

Сверлить надо
не торопясь, постоянно контролируя процесс, чтобы сверло не «уходило»
в сторону, не перекашивалось. Пройдя около 2-3 мм, можно
остановиться и начать «бурить» сверлом уже требуемого диаметра,
т.е. равного диаметру штока. При этом без следа удалится тот, не
отрезанный, кусочек бывшего штока.

Просверлив отверстия в обеих частях корпуса
стойки, берём трубку и отрезаем кусочек длиной, чуть большей
длины бывшего штока на 3-5 мм, в зависимости от просверленных
отверстии в корпусе стойки. Набор деталей готов!

Остаётся,
предварительно окрасив детали, собрать всё в единую конструкцию.

Новый шток идеально круглый в сечении,
абсолютно не нуждается в покраске и радует глаз честным,
настоящим металлическим блеском.

Консультация специалиста

(Скирко Олег, выдержки из статьи для журнала"Авиация общего назначения")

Вопрос: Каким должно быть шасси для СЛА, исходя из специфики его использования?

Ответ: Учитывая то, что СЛА это летательный аппарат:

  • предназначенный для любительских полетов зачастую с неподготовленных площадок
  • часто оснащеный двигателями, не рекомендованными для применения на воздушных судах,
  • шасси у него должно быть с повышенными требованиями к восприятию взлетно-посадочных нагрузок, к поглощению ударов и устойчивости против козления, а также оснащено надежными тормозными устройствами.

    Занимаясь проектированием, постройкой и эксплуатацией различного рода летательных аппаратов мы регулярно сталкивались с проблемой надежных элементов для шасси.

    Прочно обосновавшаяся в конструкции шасси СЛА рессора - это достаточно элегантное, аэродинамически чистое решение. Привлекает также ее видимая простота и кажущаяся дешевизна. Но является ли рессора именно тем элементом, который поможет непрофессиональному пилоту не поломать самолет в случае вероятной ошибки при выполнении посадки, или опытному пилоту сесть с отказавшим двигателем на ограниченную площадку с неопределённым рельефом? При отсутствии элемента, поглощающего энергию удара, рессора остается просто пружиной с практически линейной зависимостью деформации от нагрузки. С ростом нагрузки рессора деформируется, пока не поломается, а если удар оказался не очень сильным, то накопленная энергия передается обратно самолету, отсюда большая вероятность козления.

    Автомобильная амортизационная стойка как альтернатива рессоре, в некоторых случаях выглядит лучше, но учитывая то, что автомобильные амортизаторы изначально созданы для автомобилей с их нагрузками, спецификой работы, то практически не возможно подобрать подходящий по параметрам амортизатор, а присутствие пружины делает шасси достаточно тяжелым. Ведь нормальный стандартный автомобиль или мотоцикл не рассчитывается на удар о землю с вертикальной скоростью 3-4м/с. А работа гидравлики направлена на то, чтобы обеспечить в первую очередь плавность движения.

    Единственный выход- это применение традиционного авиационного решения на базе жидкостно-газовых (гидропневматических) амортизаторов. Это является аксиомой, что гидропневматик обладает максимальной способностью поглощать энергию удара при посадке , обеспечивая при этом наибольшую весовую эффективность. Существует большое разнообразие конструктивных исполнений. Основываясь на этом, можно выбрать максимально дешевый амортизатор, с достаточным ресурсом, с возможностью эксплуатировать его в обычных условиях без наличия специального оборудования для подкачки.

    В большой авиации под каждый самолет проектируется свой амортизатор. Это объясняется достаточно высокими требованиями к элементам шасси и к самолету в целом со стороны норм летной годности.

    В случае же со СЛА ситуация выглядит гораздо проще. Диапазон взлетных весов летательных аппаратов колеблется около 450кг., схемы шасси не дают большой разницы в нагрузках на амортизационную стойку. В связи с этим возможно разработать универсальный амортизатор , который можно применить на любом летательном аппарате, что и было сделано нами.

    Выполнив необходимые расчеты и проверив их на опытных стендах мы пришли к выводу, что варьируя с объемом масла и давлением закачки при одном и том же железе, можно получить диаграмму обжатия удовлетворяющую широкому диапазону технических требований. А проводя испытания на специально созданном дропстенде мы подобрали конструкцию клапана обеспечивающую удар об землю без отскока и в тоже время с достаточно быстрым возвратом на обратном ходе.

    Следующим шагом было освоение производства шлифованных штоков, поиска надежных высоко ресурсных уплотнений. В результате работы над решением всех этих проблем мы научились создавать амортизаторы под конкретные технические условия заказчика , точно соблюдая заданные параметры.

    Исходными данными для проектирования являются:

  • величина обжатия при стояночной нагрузке
  • нагрузка при полном обжатии, которая определятся исходя из максимальной посадочной перегрузки и кинематики шассие
  • рабочий ход
  • После создания универсального амортизатора для СЛА, используя стандартные конструктивные схемы, было освоено производство амортизаторов практически на все случаи жизни. Это амортизаторы сжатия и растяжения, скомпонованные штоком вверх и штоком вниз, со стояночной нагрузкой на амортизационную стойку от 80 до 1000 кг.

    Давление закачки в общем случае не превышает 20атм., что делает возможным подкачку амортизатора ручным насосом для амортизаторов горного велосипеда. Применяемые полиуретановые уплотнения и высоко ресурсные пары трения делают срок службы амортизатора превосходящим ресурс планера самолета.

    Один из вариантов этого амортизатора, созданный для мотоцикла, проехал в условиях наших дорог более 5000 км, что соответствует 25 000 полетам. При этом следов износа, препятствующих нормальной работе, замечено не было.

    В настоящее время эти амортизаторы ставят в разных частях Земного Шара на носовые вилки мотодельтапланов и носовые стойки самолетов, на основные стойки мотопарапланов, мотодельтапланов, автожиров и самолетов. Следует заметить, что на летательных аппаратах с повышенным риском приземления с высокой вертикальной скоростью, таких как мотопараплан и автожир, применение гидропневматиков особенно оправдано. Также обоснованным становится применение гидропневматиков при росте взлетного веса в связи с установкой тяжелых силовых установок на базе мощных автомобильных двигателей и двигателей ROTAX-912(914).

    0

    Жидкостно-газовые амортизаторы (рис. 81) представляют собой телескопически соединенные цилиндрические части, образующие рабочую камеру. Обычно верхняя часть амортизатора 1 неподвижно крепится к конструкции самолета, а ко второй, подвижной части 2 присоединяется ось для колес. Для предотвращения (у некоторых стоек для ограничения) поворота подвижных частей амортизатора вокруг вертикальной оси служит двухзвенник шасси (шлиц-шарнир). Рабочая камера стойки делится на две полости диафрагмой 4 с калиброванным отверстием.


    Внутренняя полость стойки заполняется строго дозированным количеством жидкости и газа под давлением.

    Жидкости, заливаемые в стойку, должны обладать вполне определенной вязкостью с возможно большим постоянством ее при значительных колебаниях температуры окружающей среды, чтобы уменьшить влияние изменения вязкости на работу амортизатора. Начальное давление газа в амортизационных стойках обычно колеблется от 15 до 50 кГ/см 2 , а у некоторых самолетов достигает несколько сот атмосфер.

    Герметичность телескопического соединения достигается установкой уплотнительных манжет из кожи, резины, эластичной пластмассы. В полете амортизационная стойка под действием давления газа разжата. При посадке самолета и движении его по аэродрому стойка имеет большее или меньшее обжатие, зависящее от полетного веса самолета, условий посадки, поверхности ВПП и других факторов. При этом жидкость размещается в нижней части, а газ - в верхней, но при работе амортизатора газ и жидкость энергично перемешиваются, образуя смесь.

    При ударе колес о землю под действием силы реакции земли шток с поршнем вдвигается внутрь неподвижного цилиндра. Внутренний объем стойки уменьшается и жидкость с большой скоростью выталкивается через отверстие в диафрагме, а затем проходит через отверстия в трубе 6 плунжера. Энергия удара затрачивается на увеличение давления газа, преодоление гидравлических сопротивлений при проходе жидкости через калиброванное отверстие и трение уплотнительных манжет или колец в стойке. При этом часть энергии превращается в тепло. Подбором площади проходных отверстий и изменением их в процессе работы можно в зависимости от степени участия жидкости в поглощении энергии удара получить амортизатор, в котором основное количество энергии гасится при прямом ходе или только при обратном, или в одинаковой мере при прямом и обратном ходе.

    У амортизаторов с основным торможением на прямом ходе обратный ход частей амортизатора происходит энергично, что вызывает подбрасывание самолета. В амортизаторах с основным торможением на обратном ходе на прямом ходе работает в основном газ и частично жидкость, которая поступает в полость цилиндра через отверстие в диафрагме. Из полости цилиндра, находящейся над диафрагмой, жидкость через отверстие в головке поршня 5 поступает в кольцевую полость между штоком и цилиндром, образующуюся при движении штока. При этом золотниковое кольцо 3 отжимается вниз и дает возможность жидкости свободно заполнить кольцевую полость. На обратном ходе площадь проходного сечения отверстия из кольцевого пространства уменьшается вследствие передвижения золотникового кольца вверх, и жидкость большую часть работы, аккумулированной газом при прямом ходе, превращает в тепло. Такие амортизаторы называются амортизаторами с основным торможением на обратном ходе. В современной авиации амортизаторы с торможением на обратном ходе получили наиболее широкое применение.

    Жидкостные амортизаторы благодаря малым размерам и весу начинают применяться все чаще. Упругой средой в таких амортизаторах является жидкость, которая при высоких давлениях может заметно изменять свой объем. Применение таких амортизаторов стало возможным только после того, как было создано надежно работающее уплотнение, выдерживающее длительное время давление порядка 3 000-4 000 кГ/см 2 . Гасится энергия за счет гидравлического сопротивления жидкости, перетекающей через малые отверстия из полости в полость, а также сил трения частей амортизатора при их взаимном скольжении.

    Резиновые амортизаторы. В амортизаторах резина применяется в виде шнура, состоящего из отдельных резиновых нитей, заключенных в двойную оплетку из хлопчатобумажных нитей, или в виде пластин различной толщины и формы. Шнуровой амортизатор работает на растяжение, а пластины - на сжатие. Основными недостатками резиновых амортизаторов является малый гистерезис, потеря упругости при низких температурах, разрушение под действием бензина и масла, большие габариты и малые сроки службы. В настоящее время такие амортизаторы применяются редко и только на легких самолетах.

    Масляно-пружинные и масляно-резиновые амортизаторы. Создание таких амортизаторов было вызвано стремлением устранить недостатки, присущие амортизаторам резиновым и стальным - малый гистерезис, большой потребный ход. Амортизаторы такого типа существовали до создания надежных уплотнений, после чего были вытеснены газово-жидкостными амортизаторами, в которых вместо резины или пружины применяется сжатый азот или воздух.

    Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

    Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

    Шасси

    На всех самолётах семейства RRJ используется убирающиеся шасси, с передней управляемой опорой и тормозными основными опорами. Передние опоры одинаковы на всех модификациях.

    Основные опоры могут иметь одно из двух исполнений:

    • в виде четырехколесной тележки, или
    • в виде двухколесной опоры.

    Выбор типа (исполнения) основной опоры определяет Заказчик. Узлы навески различных опор унифицированы, а размер ниши шасси выбран из условия размещения в них любой опоры.

    Схема расположения опор
    Схемы разворотов при рулении
    Кинематическая схема передней опоры показана на Рис. 1.3-10.

    Основной двухколесной опоры – на Рис. 1.3-11.
    Основной опоры с четырехколесной тележкой на Рис. 1.3-12.

    1.3.8.1. Передняя опора

    Передняя опора шасси состоит из:

    • амортизационной стойки,
    • складывающегося подкоса,
    • механизма распора,
    • двух запирающих пружин,
    • цилиндра подлома механизма распора,
    • цилиндра уборки-выпуска,
    • двух спаренных нетормозных колес с шинами.

    Опора посредством гидроцилиндра убирается вперед по направлению полёта в нишу, расположенную в носовой части фюзеляжа, и удерживается в убранном положении гидромеханическим замком. Ниша закрывается двумя парами створок, приводимыми в действие от стойки передней опоры с помощью механизмов управления створками. При выпущенной опоре передняя пара створок закрыта. Уборка и выпуск опоры производится от гидросистемы самолёта.

    Аварийный выпуск обеспечивается механическим открытием замка убранного положения опоры и замков закрытого положения створок и осуществляется под действием собственного веса опоры и пружин механизма распора.

    Колёса передней опоры управляемые и могут разворачиваться под действием механизма разворота колёс (режим управления) или под действием внешней силы (режим самоориентации). При уборке опоры колёса устанавливаются в нейтральное положение. Передние опоры всёх самолетов семейства RRJ унифицированы.

    1.3.8.2. Основная опора

    – опора с двумя колесами, размещенными в виде «спарки».

    Каждая основная опора шасси включает:

    • стойку амортизационную телескопического типа;
    • подкос складывающийся передний;
    • подкос складывающий задний;
    • устройство запирания подкоса складывающегося переднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
    • устройство запирания подкоса складывающегося заднего от самопроизвольного складывания при выпущенной опоре — распор с двумя пружинами;
    • гидроцилиндр уборки-выпуска;
    • гидроцилиндр распора;
    • гидроцилиндр распора.

    Стойка крепится к конструкции крыла при помощи полуосей размещенных в траверсе. Подкосы, фиксирующие опору в выпущенном положении, крепятся к конструкции фюзеляжа шарнирно. Распоры с пружинами являются замками подкосов и, в свою очередь замками выпущенного положения опоры.

    Гидроцилиндр каждого распора служит для преодоления эксцентриситета звеньев распора и вывода его из положения кинематического замка при уборке опоры.

    В убранном положении опора фиксируется гидромеханическим замком.

    Штатные уборка и выпуск осуществляются цилиндром уборки-выпуска от гидросистемы самолета.

    Аварийный выпуск происходит под действием собственного веса опоры после механического открытия замков убранного положения.

    Фиксация выпущенного положения производится под действием пружин распора. Опора оснащена двумя тормозными колёсами, размещёнными на одной общей оси, или колёсами, размещёнными попарно на двух осях.

    Каждая тележка фиксируется двумя стабилизирующими пневмогидравлическими амортизаторами. Воздействие тормозного момента от колёс на тележку воспринимается четырьмя тормозными тягами.

    Основные опоры всех самолётов семейства RRJ унифицированы. Амортизационная стойка обеспечивает восприятие нагрузок при разбегах и пробегах самолёта, поглощение энергии посадочных ударов, буксировку и швартовку самолета.

    Стойка телескопического типа, имеет двухкамерный пневмогидравлический амортизатор с демпфированием на прямом и обратном ходе штока. Максимальный ход штока – 400 мм (15.75 in).

    Стойка конструктивно состоит из:

    • цилиндра амортизатора;
    • штока амортизатора;
    • траверсы;
    • шлиц-шарнира;

    Траверса при помощи двух полуосей шарнирно закреплена в нише основной опоры. На цилиндре амортизатора расположен узел крепления складывающегося подкоса. На подкосе расположен механизм распора с двумя пружинами и цилиндр распора. Цилиндр уборки-выпуска крепится к траверсе и каркасу.

    Шлиц-шарнир соединяет цилиндр и шток амортстойки и фиксирует их от взаимного проворота. В нижней части штока имеется узел для установки спаренных колёс или четырехколёсной тележки. Основные двухколёсные опоры оборудованы тормозными колесами либо фирмы GOODRICH с шинами Н40х14,0-R19 (согласно сертификату EASA - http://www.easa.europa.eu/certification/type-certificates/docs/aircraft/EASA-TCDS-A.176_%28IM%29_Sukhoi_RRJ--95-01-03022012.pdf , стр. 12 - шины 40x14,5-R19 24PR 225 MPH), либо фирмы MICHELIN. Основные четырёхколёсные опоры оборудованы тормозными колёсами либо фирмы GOODRICH с шинами H30х9,5-R16, либо фирмы MICHELIN. Давление зарядки шин H40х14,0-R19, H30x9,5-R16 для различных самолетов семейства составляет: …

    Конструкция 2-х и 4-х тележечного шасси разработана фирмой «Гражданские Самолеты Сухого».

    RRJ0000-RP-100-041_Rev.B 1-34

    Фото: Основная и передняя опоры самолёта SSJ100 | Интернет

    Вопрос к уважаемым знатокам. Как вы считаете, почему до сих пор не используется электромеханическая система уборки-выпуска шасси. Казалось бы, задача вполне выполнимая - масса шасси постоянная и не такая уж большая, усилие уборки всегда одинаковое, требования к скорости уборки-выпуска - тоже не космические. Электромеханические домкраты существуют в природе, и вполне справляются с весами в 2-3 тонны (а шасси, наверное, легче), при достаточно малом весе, размерах, электропотреблении. Благодаря такой системе удалось бы существенно упростить гидравлическую систему самолета и повысить его надежность в целом. Может быть, даже уменьшить вес при этом (это нужно считать, конечно). Тем не менее, никто из авиа производителей так не делает. Не сомневаюсь, что они все умные, и, наверное, уж точно лучше меня знают, что к чему:). Но все же, почему так не делают до сих пор?

    Гидравлическая система в самолете сложна совсем не потому, что ей нужно убирать/выпускать шасси..
    Основная задача этих систем- приведение в действие системы управления самолетом - рулей направления и высоты, и элеронов, воздушного тормоза и щитков..
    И если сделать привод уборки/выпуска шасси электромеханическим, то упростить гидросистему совершенно не удастся..
    другое дело, что счас стараются перейти на смешанные системы приведения, где электричество используется в качестве резервной системы…
    Но к шасси то это зачем?

    На мой взгляд, есть несколько очевидных фактов, почему гидросистема упростится:
    1) Исчезнут гидроцилиндры уборки-выпуска шасси, связанные с ними клапана и гибкие шланги высокого давления. Причем эти шланги - источник потенциального отказа системы.
    2) В гидросистеме не станет больше потребителей, требующих больших расходов гидрожидкости. Все рулевые поверхности требуют достаточно небольших расходов, а уборка-выпуск шасси - это как стресс для гидросистемы - объемы цилиндров сравнительно большие, жидкости нужно прокачивать много и быстро. В связи с этим появится возможность уменьшить объемы гидробаков, оптимизировать систему в целом.

    Далее мои предположения, но мне кажется, что это тоже важные вещи:
    Возможно, в результате появится возможность исключить из гидросистемы дублирующие гидронасосы переменного тока ACMP1 и ACMP3. Сейчас в SSJ они в нормальной ситуации включаются в дополнение к основным только в момент уборки-выпуска шасси. Я предполагаю, что это сделано из-за нехватки производительности основных насосов - они рассчитаны на объемы, необходимые для рулевых поверхностей (небольшие объемы), а когда требуется большая производительность, их не хватает и в добавку включаются электро-насосы. Исключение этих насосов из системы - это еще одна возможность упрощения гидросистемы и уменьшения ее веса.

    Ну а раз вы затронули тему рулевых поверхностей - давно меня мучает вопрос, не у кого спросить:). Везде в интернете пишут, что гидравлика до сих пор используется для привода рулевых поверхностей потому, что, дескать, существующие на настоящий момент электроприводы не в состоянии обеспечить потребные усилия и скорость перемещения рулевых поверхностей. Но вот есть пример из практики - ИЛ-62, надежная, проверенная машина, работает в том же диапазоне скоростей и высот, что и существующие гражданские самолеты. Рулевые поверхности у него на всех режимах полета перемещаются посредством мускульной силы пилотов:). Достигнуто это за счет тщательной проработки аэродинамической компенсации рулевых поверхностей. Если при должном подходе хватает мускульной силы пилотов, то это означает, что любые электроприводы могут тоже с этим справиться. Очень странно мне все это - почему нельзя использовать этот опыт для создания подобной схемы с электроприводами? Причем для их работы потребуется совсем небольшая электрическая мощность, а сами приводы из-за небольших потребных нагрузок могут быть компактными и легкими. Очень было бы интересно послушать мнения знающих людей - почему так не делают сейчас?

    Ну, я конечно "валенок" в механике и авиации - но как-то и в автомобильном транспорте больше ГУР используют, хотя думаю требований по безопасности в автомобильной промышленности поменьше, чем в авиации. В авиации думаю, также немало важен фактор объема - гидроусилитель влезет в тонкое крыло, электроусилитель с "натягом" - хотя, повторюсь - это мнение полного "профана"…

    1) Да, исчезнут..А что будет взамен их, Вы представление имеете? Электромоторы и редуктороры весят ого-го!! Кроме того, над к ним тянуть СИЛОВОЙ кабель и защишать его.
    А гидравлические магистрали- все равно уже там, проходят аккуратненько мимо гидроцилиндров шасси:-) Что мы выигрываем?
    И по соотношению усилие/вес гидравлика пока еще весьма на уровне. Это связано с тем, что даже моторы имеют не только тепловой предел, но и ограничены по насыщению магнитов.
    2) С потребителями как раз проблем нету. Чем больше- тем лучше, гидрожидкость охлаждается хоть.. Тем более счас переходят на технику 5000psi - вопрос становится очень актуальным.. Так же, правда, как и борьба с течью.. :-(

    А пот поводу рулевых поверхностей.
    У электроприводов главный недостаток- высокая инерционность, что и сильно ограничивает его применение. даже у "компактных и легких"
    Причем инерционность практически не зависит от размеров мотора, она всегда им пропорциональна…
    То есть пока он стартанет, разгонится, начнет крутить- а уже панель перекладывать на другую сторону надо.
    Клапана тут практически безинерционны, и мгновено реагируют на сигнал..
    Так что до конца века гидравлики еще довольно далеко..

    Re: Электромеханическая система уборки-выпуска шасси

    Ого, жаль тут нет "плюсика", за такой комментарий я бы Вашу "карму" на этом форуме приподнял;-).

    Да, спасибо за ответ. Есть над чем подумать:). Как всегда - кажется, что вот как все можно здорово переделать. Но не тут то было. Тем не менее, какие есть мысли у меня по этому всему:

    1) Электромоторы тяжелые, и редукторы тоже. Но, если правильные люди над этим поработают, думаю, что по результату все не так-то будет и тяжелым. Хотя, это все мои рассуждалки и не более того. Есть примеры - в мире радиоуправляемых моделей - сейчас распространены бесколлекторные электродвигатели. Очень мощные и легкие одновременно. Хотя, конечно, согласен - до тех пор, пока на самолете есть гидросистема, нет смысла "дергаться" с шасси. Смысл появится только тогда, когда гидросистемы не будет совсем.

    2) А чтобы гидросистемы не стало, нужно переводить рулевые поверхности на электричество. Действительно, про момент инерции я не подумал. Если это единственный оставшийся фактор, то вполне понятно, что с этим делать. Мотор должен быть с максимально легким ротором, работать как можно с меньшим количеством оборотов. Редуктор должен содержать как можно меньше шестерен, и все они должны быть облегчены. В результате такая система выдаст меньшее усилие на выходе. Т.е., помимо этого, нужно все же работать над уменьшением потребного усилия для привода рулевых поверхностей (например, аэродинамикой). Но это уже делали (ил-62), поэтому тут тоже понятно, что и как делать.

    3) Остается один только вопрос - кто и когда это сделает:). К сожалению, то, что видно сейчас - все зажаты во временные и финансовые рамки. В таких условиях проще, дешевле, быстрее найти интегратора, который предложит готовое решение. Что-то мне подсказывает, что это решение не будет на электро-тяге. В этом замкнутом круге выход может быть только у каких-то больших корпораций, которые могут себе позволить дорогостоящие НИОКР по созданию приводов, и по их сертификации. Кстати, может кто знает - у Боинга на Дримлайнере - гидравлика или электроприводы? При первом поиске таких подробностей не нашел.

    По иронии судьбы я этим как раз и занимаюсь:-)
    И в принципе, обнадеживающие результаты есть. Есть некоторые компоновочные решения, которые позволяют мотору быть медленным и редуктору легким:-) Например, вполне элегантно выглядит компоновка полностью электрического ground spoiler actuator. Еще более элегантно выглядит привод закрылков.

    Но занимаюсь я частным порядком, поэтому совершенно не факт, что смогу или захочу применять это в авиаиндустриии. Геморройно все там. Автомобилестроительная отрасль гораздо более падка на новизну и неслыханно щедра при этом:-)

    © 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw