Полевой транзистор в гибридном кв ум. Гибридный усилитель

Главная / Трансмиссия

При повторении аналогичных "гибридных" усилителей мощности многие радиолюбители сталкиваются с такой проблемой, что усилитель мощности на двух лампах ГИ-7Б предложенный, например С. Воскобойниковым, (UA9KG) "не отдает" положенные 600 Вт. Попробуем разобраться на примерах и тех ошибках которые совершает большее количество радиолюбителей в приведенной ниже статье.

Желание изложить свои мысли по такой, в общем, не новой тематике, как гибридный усилитель мощности, появилась после ознакомления со статьей и на основе своего опыта. Эксплуатационные характеристики, приводимые автором этой статьи, к сожалению, не достижимы. В частности, выходная мощность этого каскада, в том варианте, в котором он опубликован, не превысит 360Вт. Получать такую мощность с двух ламп ГИ-7Б, мягко говоря, нерационально. Так почему же этот каскад "не отдает", обещанные автором 600 Вт? Рассмотрим, вкратце, работу этого каскада, рис. 1.

Для начала следует напомнить, что лампы ГИ-7Б, кстати, как и большинство металлокерамических СВЧ триодов - это лампы с "средней" анодно-сеточной характеристикой. Для получения тока покоя 30...40 мА на лампу, при рабочем анодном напряжении около 2 кВ, необходимо подать отрицательное смещение на сетку - 25 В или, что одно и тоже, придать положительный потенциал катоду на ту же величину. Напряжение возбуждения, поданное на базу транзистора VT1, открывает его положительной полуволной. Напряжение на коллекторе и, соответственно, на катоде лампы уменьшается, в следствии чего, ток через лампу растет.

Отрицательная полуволна закрывает транзистор, напряжение на коллекторе возрастает, ток через лампу уменьшается, т.к. увеличивается разность потенциалов участка катод-сетка. С точки зрения энергетики каскада нас интересует лишь положительная полуволна возбуждающего напряжения, ввиду того, что отрицательная полуволна при идеализации входной характеристики лампы, не вызывает анодного тока и лежит в области отсечки.

Напрашивается вывод: амплитуда ВЧ напряжения на коллекторе, а, именно она является возбуждающим напряжением для лампы, лежит между двумя граничными условиями. Снизу - это напряжение насыщения на коллекторе (или катоде) в точке покоя, около 25В.

Отсюда понятно, что амплитуда ВЧ напряжения на катоде лампы равна:

(1) U к возб. = U n к-э - U к-э нас.

Напряжение U к-э нас. в зависимости от типа транзистора составляет 0,5...2,5В. На практике его следует выбирать не менее 5В, поскольку при меньших напряжениях на коллекторе, усилительные свойства транзистора стремятся к нулю.Величина U к-э нас. есть напряжение на коллекторе (катоде) для заданноготока покоя в схеме с гальванически заземленной сеткой.

В нашем примере U n к-э - 25В. В общем случае эта величина берется по входным характеристикам лампы. Подставив эти величины в формулу (1) получим U к возб - 20 В. Далее не трудно вычислить мощность, отдаваемую каскадом. Амплитуда импульса анодного тока:

(2) I к А макс. = U к возб х S = 2 0 x 46 = 0,92 А,где:

  • S - суммарная крутизна характеристики двух ламп.

Постоянная составляющая анодного тока:

(3) I ao = I а макс х К о = 0,92 х 0,33 = 0,3А. где Ко = 0,33 - коэффициент разложения косинусоидального импульса для угла отсечки 90 град, (класс В) и с учетом тока покоя лампы.

Мощность, подводимая к анодной цепи лампы, U а = 2 кВ:

(4) Р подв = I a o xU а = 0,3 x 2000 = 600 Вт.

Полагая КПД каскада около 60%, получим мощность в нагрузке Р н = Р подв х КПД = 600 x 0,6 = 360 Вт.

Понятно, что, полученная мощность в нагрузке, вряд- ли может устроить. Как же повысить мощность? Ведь те же лампы, в классической схеме с общей сеткой, отдают в нагрузку до 1 кВт. Из анализа схемы можно понять, что основным параметром, ограничивающим мощность, является напряжение возбуждения U возб. которое, в свою очередь, связано с напряжением смещения лампы.

Ясно, что транзистор работает в очень нерациональном режиме, при коллекторном питании. Повысить это напряжение можно, уменьшив смещение на базе транзистора, но тогда ток покоя недопустимо снизитсяи каскад перейдете режим С. Вот здесь мы и подошли к основной идее. Рассмотрим несколько видоизмененный вариант схемы, рис.2.

Рис.2.

Как видно, что схема почти такая. Разве, что на сетку подается положительное (!) смещение, а по ВЧ она заземлена через блокировочные конденсаторы С бл.

Что изменилось для лампы? Ровным счетом, ничего. Ведь, чтобы получить тот-же ток покоя, разность потенциалов участка катод-сетка должна остаться той-же. Она и осталась таковой, однако, потенциалы катода и сетки относительно общего провода увеличились на величину Uсм. А вот для транзистора произошли весьма существенные изменения. Напряжение на его коллекторе увеличилось на величину Uсм. и стало:

(5) U" к-э = U к-э - U см. , где:

  • U к-э - напряжение для схемы на рис.1.

Иными словами; нам удалось поднять напряжение на коллекторе (катоде), не изменяя тока покоя лампы. Теперь можно рассмотреть более полную принципиальную схему выходного каскада, рис.3.

Рис.3.

Резистор R1 (в цепи сетки) в работе каскада не участвует и предназначен для обеспечения гальванической связи с "землей" в режиме приема. Номиналы базового делителя R3...R5 не указаны, т.к. напряжение на шине ТХ??? в различных конструкциях разное.

Ток, протекающий через делитель, для обеспечения нормальной термостабилизации рабочей точки должен быть не менее

(0,01...0,15) * I к макс.= 100 мА.

Несколько слов о выборе величины U см. Беспредельно поднимать его нельзя> поскольку при неизменном токе покоя растет и напряжение U" к-э. Эту величину можно определить из неравенства:

U см. < U n к-э доп. - U к-э, где:

  • U n к-э доп. - максимально допустимое напряжение на коллекторе (справочная величина);
  • U к-э - напряжение на коллекторе для заданного тока покоя в схеме с гальванически заземленной сеткой (из входных характеристик лампы).

Стабилитрон предохраняет транзистор от выхода из строя в момент, когда на базе транзистора присутствует! отрицательная полуволна возбуждающего напряжения. Кроме того, в режиме приема каскад закрыт и не "шумит".

Выбор напряжения стабилизации производится из условия:

U ст < = U n к-э доп.

Проведем расчет мощности видоизмененного каскада.

U" к-э = U к-э + U см = 25 + 35 = 60B < U к-э доп. + 65В;

U к возб = U" к-э - U к-э нас. = 60 - 5 = 55В;

I к а мах = U возб x S = 55 x 46 = 2,53А;

Р подв = I а мах x A o = 2,53x0,33 = 0,84А;

Р подв = КПД х Р подв = 1000 Вт;

Р а рас = Р подв - Р н = 1680 - 1000 = 680 < Р а доп = 700 Вт.

Таким образом, видим, что по сравнению с первоначальным вариантом мощность повысилась почти втрое. В этом случае практически полностью использован мощностной резерв ламп.

Следует заметить, что данный каскад работает с сеточным током. Из чего следует, что источник сеточного напряжения должен быть стабилизированным и обладать достаточной нагрузочной способностью - 200мА. Среди радиолюбителей почему-то прочно укоренилось мнение, что сеточный ток в лампе выходного каскада чуть ли не катастрофа. Это, конечно же, не так.

Мнение это утвердилось, вероятно, в те времена, когда подавляющее большинство радиолюбителей использовали лампы типа ГУ19, ГУ29, ГУ50 и т.п. Действительно, эти лампы не рассчитаны на работу с сеточным током, поскольку, при заходе сеточных напряжений в положительную область, - линейность анодно-сеточной характеристики резко нарушается. Кроме того, эти лампы развивают паспортную мощность и без сеточных токов. Другое дело металлокерамические лампы СВЧ-серии типа ГИ6Б, ГИ7Б, ГС23Б, ГС35Б и т.п. Эти лампы специально разработаны для работы с сеточным током и развивают паспортную мощность только при его наличии.

В заключении несколько слов о замере выходной мощности "гибрида". Ограничится только контролем анодного тока на пике возбуждения, а затем, с учетом КПД, рассчитать выходную мощность в ряде случаев будет не всегда верно. Вероятно, так и поступил автор упомянутой статьи.

Дело в том, что начиная с некоторого уровня напряжения возбуждения, прирост анодного тока продолжается, а ВЧ напряжение на эквиваленте нагрузки не растет, зачастую, даже падает. Объясняется это тем, что положительные полуволны вводят транзистор в состояние насыщения. Это не появление сеточного тока, как иногда можно услышать в эфире. Например, в усилителе по схеме на рис.1 сеточного тока не может быть в принципе, а тем не менее этот эффект сохраняется.

Чем больше амплитуда напряжения возбужения, тем дольше транзистор находится в состоянии насыщения, сопротивление перехода эмиттер-коллектор все больше уменьшается, ток через лампу растет, а прироста напряжения на эквиваленте нет. Поэтому, в любом случае, следует контролировать ВЧ напряжение на эквиваленте нагрузки. Мощность каскада следует устанавливать на 10...15% ниже максимально достижимой, путем соответствующего снижения возбуждающего напряжения.

Несколько слов о конструкции усилителя. Дополнительных требований к конструкции не предъявляется. Лампы размещены на металлической пластине, которая, в свою очередь, устанавливается на четырех высоковольтных конденсаторах КВИ, имеющих резьбовое крепление.

Конденсаторы расположены по четырем углам пластины. Конструктивно конденсаторы служат опорными стойками и, в то же время, являются блокировочными. Входное сопротивление выходного каскада, приблизительно, 30 Ом. Это обстоятельство, определенным образом, повышает его устойчивость, но требует принятия некоторых мер по согласованию с предыдущим каскадом передатчика или трансивера.

Параметры П-контура, анодный дроссель и прочие конструктивные особенности не приводятся, потому что автор делает акцент на способе каскодного включения усилительного каскада.

Г. Панов, (UA3AUP)

Литература:

1. С.Воскобойников "Усилитель мощности" - Радиолюбитель.

Всем здравствуйте.

Продолжу про оконечный каскад Александра Павловича Дерия.

В начале 2017 года, я опубликовал схему завершённого усилителя Александра Павловича на этом сайте, и параллельно, для обсуждения оной схемы, опубликовал её на АП и на diyaudio.ru

При обсуждении на АП было поднято много вопросов, и эти обсуждения не прошли даром.

На DIY много манер и тошниловки, типа даешь усилитель с трансформаторной задницей

или эх, жаль сейчас в больнице в очереди стою. А то сфоткался бы с рюмашкой Так и сфоткайся. Пить же не обязательно. Хотя и жаль… Вообщем модерация на этом форуме «приказала жить».

Да, грустное и гнусное тоже присутствует, и бывает, на некоторых форумах.

Это классический ИТУН со всеми вытекающими. Если в эмиттеры выходных транзисторов включить сопротивления по 0,5 … 1 Ом, (и соответствующие резисторы последовательно диодам смещения), искажения снизятся в разы. Да и термостабильность тока покоя станет гораздо лучше.

Александр Павлович сделал выводы и решил поэкспериментировать с комплиментарными парами на выходе, и на входе полевые транзисторы.

Основная идея принадлежит Александру Павловичу. и если охарактеризовать её кратко — «то не надо боятся большого выходного сопротивления»

Мы все любим цифры, и это тоже очень нужно и хорошо. Как говорится факт есть факт!

Но факт должен быть не замаскирован. Бывает такое, что с цифрами у усилителя всё в порядке, а звука нет

А последние измерения показали что усилитель линеен от 20Гц до 20кГц и даже выше. По -3Дб 75кГц!!!

Лично я, был рад тому, что можно снять из 10-ти деталей, и до неискажённого синуса в 1000гц 65 ватт в гибридной версии.

Лампы применялись 6Ж11П 6Ж43П в триоде и 6Ф4П в штатном включении..

Так же были опробованы 6П9, 6П15, 6Э5П, 6Э6П и IL861 и El861

(Хочу заметить что накал у IL861 лампы -20 вольт)

Единственное что можно считать «ложкой дёгтя» то это большое выходное сопротивление от 6Om до-20 Om от прототипа Александра Павловича, и от 30 до 50 Om у моей гибридной версии в зависимости от применяемых ламп. От выбора драйвера зависит выходное сопротивление усилителя.

Многие думают «и знают» что большое выходное сопротивление усилителя плохо сказывается на демпфировании акустики, но часть небольшого населения всё же считает что акустика двигаясь механически в обратную сторону, создаёт поле, которое тоже влияет на усилитель не меньше чем усилитель на акустику и соответственно на звук в целом!

В некоторой литературе сказано что при выходном сопротивлении 18 Om демпфирование акустики уже факт.

Но большинство с этим высказыванием не согласится, так как чем ближе к «нулю» выходное сопротивление усилителя, тем правильнее.

Есть и другое мнение — что выходное сопротивление в пределах 10-20 Om благотворно влияет на конечную картину в целом. Звук не зажат, «оторван от земли», расширение панорамы, лёгкость восприятия, нет утомления даже через несколько часов прослушивания.

Триодные и пентодные усилители тоже имеют разные выходные сопротивления, но оба имеют право на звук, и имеют свои за и против. Сколько ушей, столько и мнений.

На следующих фотографиях предоставлен прямоугольник на 1000Гц на 10кГц и на 20кГц. Нагрузка 5Om . Из них видно что усилитель в полном порядке. Это измерения чисто транзисторного усилителя собранного Александром Павловичем Дерием.

Чуйка усилителя 1.5v

Питание +- 24 вольта трансформатор — габаритная мощность всего 80 Ватт (от усилителя Радиотехника -101)

29 Ватт неискажённого синуса!

0. Дб — 20Гц — 20 Кгц

Низ по -3дб не смогли измерить, верх по -3дб -75Кгц

Выходное сопротивление 20 ом.

Забегая вперёд, ламповый гибридный усилитель при этой же схемотехники выдаёт 65 ватт при чуйки 0.75v при питании +- 38 вольт

20Гц -0.25Дб 20 кгц +1Дб 45Кгц-3Дб

Выходной каскад усилителя предоставлен на следующим рисунке.

Можно организовать как с общими эмиттерами так и с общими коллекторами. В последних версиях мы остановились на версии с общими коллекторами.

Очень удобно крепить транзисторы на радиатор без слюдяных пластин.

Ниже предоставлены две версии драйвера 1988 года и 2018 года


Полевой транзистор КП901 можно заменить на обычный составной транзистор КТ972, на качество звука это не сказывается, этот транзистор выполняет роль повторителя. Резисторы R11 и R12 можно и нужно заменить на 0,6 Ома., увеличится стабильность выходного каскада и уменьшатся искажения. К выходу желательно поставить цепочку цобеля и параллельно динамику поставить 56 Ом, при этом снизится выходное сопротивление на 10-15%.

Ток покоя транзисторов и нулевой уровень, выставляются резисторами R7 и R10 при уменьшении номиналов, токи уменьшаются, при увеличении возрастают. Ток покоя выставляется от 100 до 200 ма, всё зависит от грандиозности Ваших радиаторов. К примеру в гибридной версии я вообще установил 280 ма, и это не предел.

ВАЖНО! Обязательно надо устанавливать подобранную комплиментарную пару, если этого не сделать то режимы могут «уплыть».

При правильной сборке усилитель работает сразу

Ниже представлена гибридная версия усилителя. Питание +- 38 вольт. Анодное 200 вольт. Лампы драйвера EL861.

Ктр трансформатора 12.5/1/1 Первичная обмотка мотается проводом 0.25-0.33 3000 витков Вторичная 2Х240.

Я намотал на ОСМ 0.063. Намотка производилась следующем способом.

900 витков перв. — 120 витков втор . — 1200 витков перв. — 120 витков втор . -900 витков перв.

Вторичный провод мотается двойным проводом от 0.33 до 0.51. Каждый слой прокладывал миллиметровкой.

Трансформатор не является фазоинверсным. Роль фазоинвертора выполняет выходной каскад. Это большой плюс в этой схемотехнике. Плюсом я так же считаю что коллекторы транзисторов прикручены напрямую к радиатору без слюдяных прокладок.

Усилитель собран в фанерном корпусе 6мм. Фанера хорошо демпфирует гудения от трансформаторов, вибрация не передаётся на сетки ламп. При 65 Ватт на выходе, фон минимален. На 100 дб акустики его еле слышно если голову засунуть в динамик.

Сверху и снизу металл.

Фото и видеоотчёт предоставлю дополнительно, когда «причешу» монтаж.

С уважением, Евгений Вильгаук Челябинск

, в которых используются лампы и полевые транзисторы, имеют ряд преимуществ по сравнению с чисто микросхемным или транзисторным УНЧ. Тут за счёт использования радиолампы, достигается отличное усиление сигнала, который можно сразу подавать на раскачку мощных выходных полевых транзисторов. Таким образом, мы имеем всего 2 каскада усиления, в то время как если брать предусилитель с операционником, то звук внутри микросхемы пройдёт по десятку каскадов, наполнившись пусть небольшими, но искажениями. Так что разрешите представить вам, уважаемые посетители сайта " ", проект нового гибридного УМЗЧ .

Усилитель

Схема электрическая гибридного усилителя

Первый каскад усилителя построен на двойном триоде по схеме SRPP с целью уменьшения собственной нелинейности и увеличения нагрузочной способности. Нижняя по схеме половинка лампы занимается усилением сигнала, а верхняя - играет роль динамической нагрузки. Положительные особенности такого включения - это высокий коэффициент усиления и низкое выходное сопротивление каскада. Анодное напряжение выбрано равным 150-180 В.

Однотактный выходной каскад построен на полевом транзисторе по схеме мощного истокового повторителя, нагруженного на генератор стабильного тока на транзистор той же структуры. Входной сигнал с лампы через межкаскадный конденсатор поступает во входную цепь усилительного транзистора, обеспечивая хорошие технические характеристики, особенно если учесть, что усилитель не охвачен ООС.

Интегратор собран на операционном усилителе ОРА134 (можно применять к140уд6 ), что обеспечивает автоматическое удержание нулевого потенциала на выходе усилителя. Кроме того, интегратор имеет эквивалентную частоту среза 3 Гц на инфранизких частотах, что благоприятно сказывается на демпфирование акустических систем.

Блок питания


Схема БП гибридного усилителя

Блок питания - 300 Ватный тороидальный трансформатор снят с галогеновой люстры, с двумя обмотками по 12 В 6,5 А, к которым домотано по 4 витка того же провода, намотана анодная 140 В 200 мА и обмотка накальная 6,36 В 0,7 А. Количество витков подбирал экспериментально, намотав 10 витков измерил напряжение подсчитав сколько нужно витков на Вольт. В качестве межслойной изоляции использовал фторопластовую ленту ФУМ, закрепленную скотчем. Диодные мосты взяты с запасом для зарядки выпрямительных конденсаторов. Монтаж навесной. Все поместилось в корпус компьютерного БП.

Электронный фильтр с умножением емкости, размещён на основной плате УНЧ. Емкость в базе умножается на h21э составного транзистора. Из-за того что транзисторы биполярные, пришлось в базу городить многозвенную фильтрующую RC цепочку. Резистор 12 кОм шунтирующий последний конденсатор этой цепочки задает падение напряжения на транзисторе, предотвращая его насыщение. При подаче питания, напряжение плавно нарастает по мере заряда базовых конденсаторов, тем самым обеспечивая плавный выход в режим всего УНЧ. Транзисторы можно заменить на составные TIP142 и TIP147 которые уже имеют на борту диод это упростит немножко схему.

Защита колонок


Схема защиты АС усилителя

Задержка включения и защита от постоянного тока АС - Универсальная защита акустических систем от постоянного напряжения, щелчков и выбросов при включении питания, инфранизких частот. При появлении на выходе УНЧ постоянного напряжении любой полярности более 1,5 В открывается соответствующий ключ, что закроет полевой транзистор и реле разомкнет цепь АС. Защита обеспечивает задержку подключения акустических систем при включении питания (на время 5 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе.


Настройка усилителя

Настройка сводится к установке нулевого потенциала подстроечным резистором коррекции интегратора при снятых лампах и заданием необходимого максимального тока 2,5 А, в токозадающей цепи при положении аттенюатора наименьшего сопротивления.

Аттенюатор сконструирован на галетном переключателе 10П4Н , состоит из 4-х галет на 11 положений с широким лепестком ротора для безразрывного переключения сигнала. Одним из важных параметров регуляторов громкости является согласование секции правого и левого канала, так как этим явлением обусловлены пространственные характеристики всего усилителя. Регулятор громкости состоит из делителя многозвеньевой цепи из одиннадцати резисторов.

Резисторы подбирались методом подбора одинаковых сопротивлений из десятка по каждому номиналу. Две остальные галеты переключателя используются для изменения тока выходных транзисторов по отношению к амплитуде выхода аттенюатора громкости. Делитель намотан нихромом диаметром 0,5 мм., скрученным в двое на оправке 6 мм. и припаян к контактам галеты каждым третьим витком так чтоб между соседними контактами сопротивление составляло 0,15 Ом.

Технологические особенности

Электронный фильтр, усилитель, защита акустики - сделаны на плате из одностороннего текстолита лазерно-утюжным способом. Плата выполнена отдельными блоками для настройки и проверки индивидуально каждой схемы. Полевые транзисторы впаяны со стороны дорожек и прижаты через слюдяные прокладки алюминиевой пластиной к корпусу из радиаторов 4 м2, на полной мощности греются до 60-75 0с.

При подаче питания, лампа прогреваясь через межкаскадный влияет на полевой транзистор тем самым смещая ноль, схема защиты не подключает АС до выхода в режим лампы 30-40 секунд. Если резко крутнуть ручку аттенюатора, действие вызовет появление инфранизких частот и сработает защита на 5 секунд. При значительным увеличении тока подстрочным резистором могут возникнуть искажения на высоких частотах, лучше уменьшить токовый резистор до 0,25 - 0,28 Ома. Межкаскадный конденсатор нужно выбрать по лучше чтобы не испортить всю картину звука.

УНЧ получился отличный, слушаю больше месяца. Выходной каскад в точности повторяет усиленный входной сигнал от 10 Гц почти до 1 МГц, проверял генератором без ламп сигналами - меандр, пила, синусоида, комплексными шумами. Лампа придает звуку характерною окраску, которая в свою очередь хорошо восприниматься слушателем. Классический завал меандра на частоте 50000 Гц характерная черта каскадов построенных на лампах. Это есть, мягкое и незаметное ограничение амплитуды звукового сигнала на динамических всплесках, своего рода улучшайзер.

P.S. Кому хочется точной передачи сигнала можно удалить лампу, а интегратор использовать еще как предварительный усилитель, добавив в схему два резистора, но тогда надо качественные ОУ, а они дороговаты. Все необходимые файлы и даташиты на используемые радиоэлементы - в общем архиве .

Есть ещё мысль попробовать генератор тока на операционнике подвязав его сдвоенным резистором с регулятором громкости, чтобы плавно регулировать ток в зависимости от мощности. В общем проекту есть куда развиваться, с вами был О.Сененко.

Гибридный усилитель звука , который показан на схеме ниже многими меломанами считается одним из лучших аппаратов такого типа вобравший в себя все самое лучшее, что может максимально предоставить ламповый и транзисторный УМЗЧ. Его звучание похоже на двухтактный аппарат выполненный на триодах, но басы намного насыщеннее, быстрее, четче и солиднее. Средняя полоса прозрачная с ярко выраженными деталями, верхние частоты без всяких примесей, которыми грешат транзисторные приборы. Я уже давно подумывал взяться за сборку усилителя мощности с высоким классом. Перебрав различные варианты схем, коих великое множество в интернете, но большее внимание привлекла именно вот эта принципиальная схема.

В общем как основа, такое схематическое решение мне абсолютно подходило, тем не менее позднее, по ходу настройки возникла необходимость ее немного модернизировать. Схема то прекрасная, но не хватало там защитных функций. Поэтому я в первую очередь добавил защиту, обеспечивающей мягкий запуск усилителя при включении сетевого напряжения. Усовершенствовал функцию выполняющей автоматическое смещение напряжения на транзисторах MOSFET IRFP140 и IRFP9140. В изначальной авторской разработке, напряжение с выхода ламп значительно терялось в схеме смещения обладающей малым внутренним сопротивлением. Только после того, как я увеличил ее общее сопротивление порядка до нескольких сот кОм, то размах амплитуды на выходе возрос до 30v. p>

В конечном итоге гибридный усилитель обеспечивает выходную мощность до 200 Вт на каждый канал, при работе на нагрузку 4 Ом. Исходя из того, что выходной каскад аппарата работает в классе А, я заранее предусмотрел установку теплоотводов под полевые транзисторы, а для охлаждения радиаторов дополнительно еще вентилятор. По техническим и звуковым параметрам эта схема очень схожа с известным гибридным усилителем мощности Magnat RV3. Существенное отличие этого усилителя от Магната, это то, что в выходных каскадах последнего реализованы кремневые биполярные транзисторы, а в этом оконечный каскад работает на полевых транзисторах. Именно применение MOSFET-транзисторов исключило необходимость установки дополнительных каналов согласования, исключительно только конденсаторы в качестве переходных элементов.

Говоря об устройствах такого типа как лампово-транзисторный усилитель , стоит отметить, что основная цель в получении высокой мощности на выходе, не в угоду громкости в динамиках, а для воспроизведения качественного, естественного звука. Также стоить отметить еще одну конструктивную особенность устройства. Что бы обеспечить питающим напряжением ламповый модуль усилителя был использован импульсный блок питания имеющий постоянное выходное напряжение 6,3v и 270v, вследствие чего удалось максимально убрать фон низкой частоты и кардинально снизить уровень шума.

Важное замечание! Представленная здесь схема, как было сказано выше, использовалась как основа. Поэтому у каждого кто возможно планирует ее повторить, есть возможности усовершенствовать ее по своему. Еще хочу добавить, что в процессе тестирования решил полностью убрать каскад установленный между конденсаторами и полевыми транзисторами. На данный момент установлен каскад, задающий смещение на затворах. Основными элементами этого каскада являются переменные, много оборотные резисторы, а также стабилитроны, возможно нужно будет заменить постоянные стабилизаторы на регулируемые.

По многочисленным просьбам радиолюбителей, привожу усовершенствованную и более полную схему гибридного УНЧ с подробным описанием, списком деталей и схемой блока питания. Лампу на входе схемы гибридного УНЧ 6Н6П - заменил на 6Н2П. Так же можно поставить в этот узел и более распространённую в старых лампачах 6Н23П. Полевые транзисторы заменимы на другие аналогичные - с изолированным затвором и ток стока от 5А и выше. Переменник R1 - 50 кОм это качественный переменный резистор на регулятор громкости. Можно поставить его вплоть до 300кОм, ничего не ухудшится. Обязательно проверить регулятор на отсутвие шорохов и неприятных трений при вращении. В идеале стоит использовать РГ ALPS - это японская фирма по производству качественных регуляторов. Не забываем про регулятор баланса.

Подстроечным резистором R5 - 33 кОм вставляется ноль напряжения на динамике в режиме молчания УНЧ. Другими словами подав питание на транзисторы и вместо динамика (!) подключив мощный резистор на 4-8 Ома 15 ватт, добиваемся на нём нуля напряжения. Меряем чувствительным вольтметром, так как должен быть абсолютный ноль. Схема одного канала гибридного УНЧ приведена ниже.


Остальные резисторы 0,125 или 0,25 ватт. Короче любые маленькие. Конденсатор 10000мкФ можно смело уменьшить до 100мкФ, а нарисован он так по старому обозначению. Все конденсаторы по анадному питанию ставим на 350В. Если трудно достать на 6,8мкФ - ставим хотя бы на 1мкФ (я так и сделал). Транзистор управления током покоя, заменим на КТ815 или КТ817. На звуке это не отразится, он там просто ток корректирует. Естественно нужна ещё одна нужна копия гибридного УНЧ и для второго канала.


Для питания транзисторов нужен двуполярный источник +-20 (35)В с током 4А. Можно на обычном трансформаторе. Так как большая мощность не требовалась - поставил 60-ти ваттный транс от видеомагнитофона с соответствующим снижением выходной мощности. Фильтрация простая - диодный мост и конденсатор. При токе покоя 0,5А - хватит ёмкости 10000мкф на канал. Конденсаторы С3, С4, С5 по 160В, не меньше. Или на всякий случай больше. R8 небольшой подстроечный резистор - крутится отвёрткой. Он задаёт ток покоя выходных транзисторов (в отсутствии сигнала). Выставить ток надо от 0,3А - режим АВ до 2А - режим А. Во втором случае качество звука гораздо лучше, но вот греться будет не слабо. Можно задействовать для питания и с дополнительным кольцом и обмотками 12витков - на неё идёт 12В с трансформатора, и двумя по 20В - это вторичка. В этом случае диоды моста должны быть высокочастотными, простые КД202 сгорят в момент.


Накал питаем 12-ю вольтами соединив накалы обеих ламп последовательно. Анодное напряжение 300В я брал с помощью маленького трансформатора (5 ватт) от китайского многонапряжительного адаптера. Питать от той пародии, кроме светодиода, ничего нельзя, а вот в этом гибридном он пришёлся к месту. На его 15-ти вольтовую вторичку подаём 12В с электронного (или обычного) трансформатора, и с 220-ти вольтовой сетевой снимаем напряжение. Ток конечно не ахти, но обе лмпы 6Н2П тянут по аноду всего 5мА, так что большего им и не надо.

Обсудить статью ГИБРИДНЫЙ УНЧ

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw