Какие радары использует гибдд и как их обмануть? Измеритель скорости. Виды и работа

Главная / Трансмиссия

Приборы для измерения скорости и расхода 10- 8

Приборы для измерения скорости

Для измерения местных скоростей применяются гидродинамические трубки, термоанемометры и гидрометрические вертушки.

Определение скоростей с помощью гидродинамических трубок основано на измерении скоростного напора , равного разности полного
и статического напоров в потоке. Полный напор измеряется трубкой полного напора, представляющей собой изогнутую под прямым углом трубку, обращенную своим открытым концом против потока (рисунок 4).

И

з уравнения Бернулли, записанного для 1 и 2-го сечения элементарной струйки следует

,

откуда

Рисунок 4 – Трубки полного и статического напоров

Трубка полного напора и статического напора, конструктивно объединены в одном приборе и представляют собой гидродинамическую трубку. Пито-Прандтля (рисунок 5). Приемником полного давления является отверстие 1 осевого канала цилиндра, сообщающееся через трубку полного напора 6, помещенную в державке, со штуцером 9. Для приема статического давленияна боковой поверхности цилиндра выполнены канавки 7, закрытые кожухом 4 с прорезями 3.

Рисунок 5 – Гидродинамическая трубка Пито-Прандтля со сферическим носком

Используются также гидродинамические трубки иного конструктивного оформления. Местная скорость (скорость в точке) определяется по формуле

,

где - поправочный коэффициент, определяемый путем тарирования трубки.

Гидродинамические трубки применимы для измерения скоростей более 1 м/с.

Термоэлектрические анемометры

Действие термоанемометров основано на использовании зависимости между электрическим сопротивлением проводников и их температурой. Термоанемометр представляет собой проволоку из инертного металла (платины, вольфрама, никеля), припаянную к двум электродам, закрепленным в державке (рисунок 6). Толщина проволоки 0,005-0,01 мм, длина 1-3 мм. Проволока помещается в поток и нагревается электрическим током. Поток, обтекающий проволоку, охлаждает ее, электрическое сопротивление проволоки при этом изменяется на некоторую величину в зависимости от скорости потока, фиксируя это изменение с помощью соответствующих электрических схем, можно определить величину местной скорости потока, нормальной к проволоке.

Рисунок 6 – Схема электрической цепи и тарировочная кривая

термоанемометра, работающего по методу постоянной силы тока:

- скорость потока; - напряжение тока

Гидродинамическая вертушка

Представляет собой лопастное колесо, помещенное в поток и приводимое им во вращение (рисунок 7). В процессе измерения фиксируется скорость набегающего потока. Вертушка предварительно тарируется и снабжается тарировочным графиком

Рисунок 7 – Гидрометрическая вертушка

Приборы для измерения расхода и количества жидкости

Средство измерения расхода или количества жидкости называется преобразователь расхода .

По типу измеряемой среды различают расходомеры жидкостные, газа и пара. Одна и та же модель расходомера не может использоваться для измерения разных сред – слишком различны физические параметры.

Под жидкостью понимаются любые типы капельных жидкостей (вода, мазут, нефть и др. технические жидкости)

Под газом понимается природный (метан) или технический (кислород, водород и т.п.) газ, а также сжатый воздух.

Пар может использоваться сухой насыщенный или перегретый. Для влажного пара корректное измерение расхода невозможно. Особо оговариваются максимальные давление и температура пара.

По выходному сигналу – с аналоговым, импульсным или цифровым выходом.

По принципу действия

мерные емкости (тарированный резервуар, бак)

мерные водосливы (поплавковые расходомеры)

с переменной площадью сечения – ротаметры

переменного перепада давления – диафрагмы, сопла и трубы Вентури

тахометрические

электромагнитные (индукционные)

ультразвуковые * 1

вихревые

кориолисовые

Мерные емкости

При объемном способе измерения расхода жидкости, жидкость поступает в тщательно тарированный резервуар (мерник), при этом фиксируется время наполнения определенного объема. Объемный расход равен

.

Способ измерения расхода с помощью мерного резервуара является наиболее точным. Он широко применяется в лабораторной практике для опытных исследований и поверок измерителей расхода.

Мерные водосливы

Служат для измерения расхода воды в лабораториях и на оросительных системах. Пример – треугольный водослив с тонкой стенкой в лабораторных работах.

Расходомеры переменного перепада давления

Расходомерами переменного перепада давления называются измерительные комплексы, основанные на зависимости перепада давления, создаваемого устройством, установленным в трубопроводе, от расхода жидкости или газа.

Состав комплекса:

    Первичный преобразователь расхода (гидравлические сопротивление, трубка Пито);

    первичные линии связи – соединительные трубки и вспомогательные устройства на них (отстойные сосуды, воздухосборники);

    первичный измерительный прибор – дифманометр;

    вторичные линии связи (электрические провода)

    электронный преобразователь (записывающий, показывающий)

Расходомеры переменного перепада давления

с сужающим устройством

Стандартные – диафрагма, сопло, труба Вентури –

не требуют индивидуальной градуировки.

с гидравлическим сопротивлением

например – шариковая набивка

с напорным устройством

Принцип действия основан на измерении перепада давления, возникающего при переходе кинетической энергии в потенциальную.

Пример – Трубка Пито-Прандтля или осредняющие напорные трубки, установленные поперек трубопровода

центробежные расходомеры

основаны на зависимости расхода от перепада давления, образующегося на закругленном элементе трубопровода (колене) под действием центробежных сил

Рисунок 8 – Расходомеры переменного перепада давления:

а – диафрагма; б – сопло; в – труба Вентури

Расход жидкости определяется по формуле

или

где - коэффициент расхода,

- площадь проходного сечения сужающего устройства;

- разность статических напоров,

.
- разность давлений до и после сужающего устройства

- плотность измеряемой среды (зависит от температуры и давления)

Скоростные счетчики чаще всего применяют для контроля количества воды, расходуемой в системах водоснабжения. Различают скоростные счетчики с вертикальной крыльчаткой (крыльчатые) и с винтовыми вертушками (турбинные).

Крыльчатый счетчик состоит (рисунок 9) из крыльчатки 1 и передаточного механизма 8, связанного со счетным механизмом 9. Передаточный и счетный механизм представляет собой ряд последовательно зацепленных шестерен.

Расход жидкости определяется отношением прошедшего через счетчик объема жидкости за определенное время к времени

.

Ротаметр (рисунок 10) представляет собой коническую прозрачную стеклянную трубку 1 (угол конусности от 35  до 5 о 35 //) с помещенным внутри нее поплавком 2.

Рисунок 9 – Счетчик с вертикальной крыльчаткой Рисунок 10 – Ротаметр

Ротаметр устанавливается на вертикальном участке трубопровода. Если сила, воздействующая на поплавок, превышает вес поплавка, то поплавок всплывает, увеличивая площадь щели для протекания жидкости, при этом сила, действующая на поплавок со стороны жидкости, уменьшается. Когда гидродинамическая сила становится равной весу поплавка, его всплывание прекращается.

Измерение расхода ротаметром основывается на использовании связи между расходом и положением поплавка. Характер этой связи зависит от угла конусности трубки, формы и веса поплавка, вязкости жидкости и обычно устанавливается путем индивидуального тарирования ротаметров.

Ротаметры применяют для измерения расходов жидкости и газа в широком диапазоне, начиная от малых, порядка 0,1 см 3 /с. Погрешность измерений не превышает 6 %. Недостатком их является зависимость показаний от физических свойств жидкости и невозможность измерять переменные во времени расходы.

1Прим.: Не «ультро» а «ультра» !

Скорость полета самолета измеряют относительно воздушного потока и относительно поверхности земли. Причем рассматривают как горизонтальную, так и вертикальную составляющие скорости.

Различают истинную воздушную скорость - ско­рость полета самолета относительно воздушного потока, индикаторную (приборную) скорость - скорость полета самолета относительно воздушного потока у земли при таком же динамическом давлении (скоростном напоре) как на данной высоте, и путевую скорость - скорость полета самолета относительно поверхности земли.

Безразмерной характеристикой скорости полета самолета является число М, равное отношению истинной воздушной скорости к скорости звука.

Известно несколько методов измерения скорости полета самолета: аэродинамический, доплеровский и инерциальный.

Аэродинамический метод измерения скорости полета основан на измерении динамического давления скоростного напора воздуха, функционально связанного со скоростью полета.

Доплеровский метод измерения скорости полета сводится к измерению разности частот радиосигналов излучаемого к земной поверхности и отраженного от нее.

Инерциальный метод измерения скорости основан на измерении ускорений и однократном интегрировании полученных сигналов.

Доплеровский и инерциальный методы применяются для измерения путевой скорости.

Комбинированные указатели скорости. Измерение истинной воздушной Vист и приборной (индикаторной) Vnp (V i) скоростей осуществляется анероидно-манометрическими приборами.

В основу принципа действия этих приборов положено измерение динамического давления.

При полете со скоростями, не превышающими 400 км/ч, динамическое давление р д, равное разности полного и статического р н давлений, пропорционально воздушной скорости полета V:

Р д = Р п - Р Н = ρ н V 2 ист: 2=ρ 0 V 2 0: 2

где р 0 , р н - плотности воздушной среды у земли и на высоте Н.

Приборы для измерения скорости полета называются указателями скорости. Они делятся на следующие типы:



Указатели приборной скорости;

Указатели истинной воздушной скорости.

Наряду с указателем истинной воздушной скорости применяется указатель числа М. Этот прибор показывает значение истинной воздушной скорости в относительных единицах (по отношению к скорости звука).

Указатель приборной скорости (УС) применяется в качестве пилотажного прибора.

Принцип действия его основан на измерении динамического давления встречного потока воздуха с помощью манометрической коробки, деформация которой передается на стрелку специальным механизмом.

Таким образом, указатель индикаторной скорости измеряет скоростной напор Δр = ρV 2 /2g , зависящий не только от скорости полета, но и от плотности воздуха.

Этот прибор будет показывать истинную воздушную скорость только на той высоте, на которой производилась его градуировка. Обычно указатель индикаторной скорости градуируется при нормальной плотности воздуха у --1,225 кг/м 3 , поэтому показания прибора будут соответствовать истинной воздушной скорости при полете у земли.

Аэродинамические силы, действующие на самолет в полете, также пропорциональны скоростному напору. Например, величина подъемной силы выражается формулой

Y=C y S ρV 2 /2g

Где: С у - коэффициент подъемной силы;

S - площадь несущих поверхностей.

Для поддержания требуемого режима полета важно знать не истинную воздушную скорость, а индикаторную скорость полета. Следовательно, по указателю приборной скорости легко выдерживать нужные режимы полета.

Приборы измерения скорости по существу дает информацию о подъемной силе самолета на любой высоте полета, что особенно важно знать тогда, когда подъемная сила приближается к критическому значению.

Указатель истинной воздушной скорости (ИВС) предназначен для измерения истинной воздушной скорости полета. Его принцип действия, так же как и указателя приборной скорости, основан на измерении динамического давления встречного потока воздуха. Отличие состоит в том, что в указателе ИВС измеряется также и статическое давление. В нем совмещены два прибора - указатель индикаторной скорости и указатель истинной воздушной скорости.

Прибор имеет единую шкалу и две стрелки, одна из которых (широкая) показывает приборную скорость, а другая (узкая) - истинную воздушную скорость.

Применяемые на самолетах измерители скоростей представляют собой комбинированные приборы, одновременно указывающие как истинную, так и приборную скорости полета.

Комбинированный указатель скорости типа КУС устроен следующим образом. Внутри герметического корпуса раз­мещены манометрическая 6 и анероидная 5 коробки. Внутренняя полость манометрической коробки соединена с самолетной системой полного давления, а внутренний объем корпуса прибора с

си­стемой статического давления. Внутри корпуса смонтированы механизмы истинной и приборной скоростей, которые работают от общего чувствительного элемента - манометрической коробки.

Кинематическая схема комбинированного указателя скорости:

1 - стрелка истинной воздушной скорости; 2 - стрелка приборной скорости; 3, 11 - зубчатые секторы; 4, 7, 8, 10 - поводки; 5 - анероидная коробка; 6 - манометриче­ская коробка; 9, 12 - трибки

Под действием разностного, т. е. динамического давления Р д = Р п - Р с, манометрическая коробка деформируется. Ли­нейное перемещение ее подвижного центра с помощью тяги, ocи М, поводков 7 и 8, сектора 3 и трибки 9 преобразуется в пово­ротное движение широкой стрелки 2, указывающей приборную скорость полета, т. е. скорость без учета сжимаемости воздуха и изменения его плотности на высоте полета.

Для измерения Vист необходимо учитывать изменения плотности воздушной среды. С этой целью в приборе предусмотрен специальный механизм, чувствительным элементом которого служит анероидная коробка. При изменении статического давления внутри прибора анероидная коробка деформируется.

Линейное перемещение подвижного центра при помощи тяги и оси А передается на поводок 4 и вызывает изменение передаточного отношения между осями М и А. Поскольку на ось И передается угловое перемещение, пропорциональное Vnp, а через поводок 4 - перемещение, пропорциональное изменению плотности, ее поворот прс исходит на угол, соответствующий V ист. Это перемещение с по мощью поводков 10, сектора 11 и трибки 12 преобразуется в поворотное движение узкой стрелки 1, указывающей по шкале истинную воздушную скорость V ист.

Указатель числа М.

Прибор, с помощью которого измеряется число М полета, называется указателем числа М. Существующие указатели числа М основаны на измерении отношения динамического давления Δр воздуха к статическому давлению р ст.

Число М является функцией отношения динамического давления к статическому, независимо от температуры воздуха.

Для указателя числа М нужна схема, аналогичная схеме указателя истинной воздушной скорости, но без элемента, учитывающего температуру воздуха.

Анемометр это метеорологический прибор при помощи котрого измеряют скорость воздушных потоков и ветра. Был изобретён в 1667 году. Современные анемометры, помимо скоростных характеристик воздушных масс, измеряют температуру воздуха.

Классификация анемометров и принцип их работы

Существует множество разновидностей анемометров, однако чаще всего для измерений используют:

Чашечный анемометр

Чашечный анемометр имеет самую простую конструкцию: подвижный элемент с четырьмя лопастями. Как только ветер на них воздействует, ось начинает вращаться и передавать данные измерительному прибору. Он фиксирует число вращений лопастей за конкретный период времени. Анемометр этого типа идеально подходит для использования на открытой местности, поэтому ценится метеорологами.

Крыльчатый анемометр

Крыльчатый анемометр наиболее распространен среди приборов, измеряющих скорость воздушных масс. Он состоит из крыльчатки, защищенной кольцом, и соединенной напрямую либо гибким проводом с измерительным прибором. Такая конструкция позволяет использовать его для регистрации скорости воздуха в труднодоступных местах.

Ультразвуковой анемометр

Ультразвуковой анемометр реже других используют для измерения скорости ветра. Как уже понятно из названия, он измеряет скорость звука в помещении, которая меняется в зависимости от направления перемещения воздушных масс.

Двухкомпонентные устройства помимо скорости ветра могут определять, куда он движется в зависимости от частей света. Скорость звука в такой аппаратуре зависит от времени преодоления ультразвуковыми импульсами расстояния от излучателя до ультразвукового микрофона. Практически все анемометры работают от заряжаемых аккумуляторов или батареек.

Сфера применения анемометров

Современная цифровая аппаратура укомплектовывается жидкокристаллическим дисплеем. На него и выводится результат измерений. Можно выбрать в каких единицах отображать скорость ветра, а иногда подключить девайс к компьютеру, собирать данные, синхронизировав анемометр с временем ПК, или выгрузить собранную информацию в отдельный файл.

Крыльчатый анемометр применяют в строительстве для определения скорости перемещения воздушных масс в вентиляции, трубах и шахтах. Также этот прибор используют в сельском хозяйстве для проверки систем кондиционирования помещений. Своевременная диагностика скорости перемещения воздушных масс поможет предотвратить различные заболевания у животных и остановить либо предупредить распространение инфекции. Большинство современных моделей анемометров вычисляют скорость ветра, объём воздушных масс и даже влажность воздуха.

Анемометр – прибор для измерения скорости ветра
Анемометр это метеорологический прибор при помощи котрого измеряют скорость воздушных потоков и ветра. Был изобретён в 1667 году. Современные анемометры, помимо скоростных характеристик воздушных масс, измеряют температуру воздуха. Классификация анемометров и принцип их работы Существует множество разновидностей анемометров, однако чаще всего для измерений используют:


  • Как самостоятельно сделать прибор для измерения скорости ветра
  • Как определить силу ветра
  • Что такое анемометр

Создание анемометра своими руками: нюансы работы

Для изготовления прибора, который измеряет скорость воздушного потока, потребуются подручные средства. К примеру, в качестве лопастей анемометра можно использовать половинки пластиковых пасхальных яиц. Также обязательно потребуется компактный бесщеточный двигатель на постоянных магнитах. Главное, чтобы сопротивление подшипников на валу моторчика было минимальным. Такое требование обусловлено тем, что ветер может быть совсем слабым, и тогда вал двигателя просто не будет проворачиваться. Для создания анемометра сгодится двигатель от старого жесткого диска.

Главная трудность при сборке анемометра заключается в том, чтобы сделать сбалансированный ротор. Двигатель потребуется установить на массивное основание, а на его ротор насадить диск из толстого пластика. Затем из пластиковых яиц нужно аккуратно вырезать три одинаковые полусферы. Они закрепляются на диске при помощи шпилек или стальных стержней. При этом диск предварительно надо разделить на сектора по 120 градусов.

Балансировку рекомендуется проводить в помещении, где полностью отсутствуют всякие движения ветра. Ось анемометра должна находиться в горизонтальном положении. Подгонку веса обычно выполняют с помощью надфилей. Смысл в том, чтобы ротор останавливался в любом положении, а не в одном и том же.

Калибровка прибора

Самодельный прибор обязательно должен быть откалиброван. Для калибровки лучше всего использовать автомобиль. Но понадобится какая-то мачта, чтобы анемометр не попал в зону возмущенного воздуха, создаваемого автомобилем. В противном случае показания будут сильно искажены.

Калибровку следует проводить только в безветренный день. Тогда процесс не затянется. Если же будет дуть ветер, придется долго ездить по дороге и вычислять средние значения скорости ветра. Нужно учитывать, что скорость спидометра измеряется в км/ч, а скорость ветра в м/с. Соотношение между ними – 3,6. Это значит, что показания спидометра потребуется разделить на это число.

Некоторые люди в процессе калибровки используют диктофон. Можно просто надиктовать показания спидометра и анемометра на электронное устройство. В домашних условиях вы сможете создать новую шкалу для своего самодельного анемометра. Только с помощью правильно откалиброванного прибора можно получить достоверные данные о ветровой обстановке в необходимой зоне.

Совет 1: Как самостоятельно сделать прибор для измерения скорости ветра
👍, Прибор для измерения скорости ветра или воздушного потока называется анемометром.


Анемометр Benetech GM816. Основной функционал: измерение скорости и температуры воздушного потока, Диапазон измерения скорости ветра: 0,3…30 м/с.0. 90 км/ч, Точность измерения скорости ветра: ±5% с шагом 0,1 м/с., Диапазон измерения темпера

Обнаруживаемые материалы: скорость воздушного потока, Тип: анемометр

DT-619 Измеритель скорости воздуха и температурыВысокая чувствительность и точность при измерении скорости потока воздуха Удобный эргономичный дизайн Большой дисплей LCD Кабель 2м Функции Data/Max/Min hold Сапфировые упоры скольжения Индикация низкой емкости ба.

DT-618 Измеритель скорости воздуха и температурыОсобенности: Высокая чувствительность и точность при измерении скорости потока воздуха Удобный эргономичный дизайн Большой дисплей LCD Кабель 2м Функции Data/Max/Min hold Сапфировые упоры скольжения Индикация низ.

Анемометр Benetech GM816A. Основной функционал: измерение скорости и температуры воздушного потока, Диапазон измерения скорости ветра: 0,3…30 м/с., Точность измерения скорости ветра: ±5% с шагом 0,1 м/с., Диапазон измерения температуры: -10…+45

DT-620 Измеритель скорости воздуха и температуры Высокая чувствительность и точность при измерении скорости потока воздуха Удобный эргономичный дизайн Большой дисплей LCD Диапазон температур поверхности: -50ºC до 260ºC (пирометр) Оптическое разрешение: 8:1 Кабель.

Анемометр Benetech GM8902. Основной функционал: измерение скорости, температуры и объема воздушного потока, Диапазон измерения скорости: 0,3…45 м/с., Точность измерения скорости: ±3% с шагом 0,1 м/с., Диапазон измерения температуры: -10…+45

В процессе проверки и наладки вентиляционных систем приходится выполнять довольно много измерений и вычислений, что влияет на эффективность работы технического персонала. Используя анемометр Testo 416, вы сможете существенно повысить оперативность своей работы, так как.

Анемометр ADA AeroTemp применяется для измерения скорости воздуха и его температуры. Прибор идеален для применения на станциях наблюдения за окружающей средой, для проверки вентиляции, кондиционирования воздуха, в парусном и авиационном и парашютном спорте. Анемометр AD.

ADA фирменный магазин, официальный сервисный центр

Анемометр-термометр ADA AeroTemp Анемометр-термометр ADA AeroTemp А00406 ― компактный и легкий прибор, предназначенный для определения скорости потока и температуры воздуха. Он широко используется для проверки вентиляции, кондиционирования воздуха, на станциях наблюдени.

Приборы для измерения скорости ветра в Севастополе
Большой каталог товаров: приборы для измерения скорости ветра в Севастополе▼ – сравнение цен в интернет магазинах, описания и характеристики товаров, отзывы



Измеряем силу ветра. Домашняя метеостанция

15 комментариев:

Грандиозно!))) И просто одновременно! Уедем на море, постараюсь тоже воплотить этот проект в жизнь!))
Ох лэпбук какой новый хороший! Красота!))

Ужасно рада, Лена, что вам понравилось и пригодится Лёвушке! Желаю вам хорошо и с пользой отдохнуть на каникулах!
Кстати, все забываю вам написать! Я же уже давно как получила ваш приз за Финдуса. Спасибо огромнейшее. Такие милые и закладочка, и открыточка – просто оооочень понравились!

))) Очень приятно, что вам понравилось)))

Спасибо! Наконец-то что-то интересное придумано! А то скукотища обычно была с этими наблюдениями.

Ой, я в школе просто ненавидела заполнять дневник наблюдений! А потом оказалось, что наблюдать погоду так интересно!))) Столько всего можно сделать, измерить и проверить!

Круто! И можно с дочкой такое сделать!

Буду рада, если вашей доченьке понравится

Спасибо, Татьяна. за колдуна! Мы с детьми наблюдали такой в аэроклубе, тогда родилась мысль создать уменьшенную копию, тоже думала о пакетах для мусора), теперь, благодаря вашему опыту, примерно представляю, как это осуществить))).

О, как здорово, что вы тоже будете делать! Надеюсь, потом покажете в “Катиной коллекции”? ,)

Обязательно покажем))). Сейчас собираю коллекцию занятий и игр с ветром и воздухом. Люблю делать все скопом))).

О, тема какая богатая – там столько всего интересного!

Замечательный флюгер получился!

Спасибо Жалко вот полосочек нет на нем – но может быть еще раз сделаем, тогда и добавим.

Занятная идея. Очень понравилась. Спасибо.

Буду рада, если пригодится:)

Чтобы оставить комментарий*, напишите текст в окошке и выберите в “Подписи комментария” профиль из любого вашего аккаунта. Если вы нигде не зарегистрированы, выбирайте Имя/URL и просто вводите свое имя – оно отобразится в подписи.

Получать новости блога на электронную почту

Поиск по блогу

Специально для первоклашек!

Все на море!

Лето с лэпбуком!

Наблюдаем за погодой!

Лэпбук “Ворона” БЕСПЛАТНО!

Акция Времена года

Шаблоны для распечатки более 20 лэпбуков на самые разные темы!

Задавайте вопросы в Клуб почемучек!

Моя книга для детей

Мои научно-популярные детские книжки

Мои книги про космос для малышей

Мои книги с заданиями по профессиям

Моя новая развивающая книжка

E-book “Опыты с магнитами”

E-book “Опыты со льдом”

E-book по мотивам “Клуба почемучек”

Еще один мой блог, в котором я делюсь своим опытом ведения блога на Блоггере

Совсем скоро начнется новый учебный год. И множество девчонок и мальчишек сядут за школьные парты. Не секрет, что для многих из них выход в.

Измеряем силу ветра
Как сделать ветроуказатель (колдун) своими руками. Занимаемся с детьми наблюдением погоды и природных явлений.



Спидометры

Спидометр информирует водителя о скорости движения автомобиля и пройденном пути, и объединяет два измерительных устройства - указатель скорости и счетчик пройденного пути, называемый одометром.
Спидометр является важным контрольно-измерительным прибором, поскольку информирует водителя о безопасном режиме движения, поэтому эксплуатация автомобиля с неисправным спидометром запрещается правилами дорожного движения.

Считается, что спидометр (от английского «speed» - скорость) изобрел в 1801 году наш соотечественник - крепостной механик-самоучка Егор Кузнецов. Он приспособил к конному экипажу счётчик собственной конструкции, позволяющий не только подсчитывать число пройденных саженей и вёрст, но и скорость движения.
Диковинка, которую назвали «верстометром» была показана императору Александру I и некоторое время забавляла придворных.
Затем, как это часто бывало в России, «верстометр» был надолго забыт.
И лишь спустя две сотни лет сотрудники Санкт-Петербургского Эрмитажа обнаружили это уникальное устройство в одном из хранилищ знаменитого музея. Его удалось реставрировать и выставить в музейной экспозиции.

На автомобиль первый прибор для измерения скорости был установлен в 1901 году. Вплоть до 1910 года спидометр считался диковинной вещью и устанавливался в качестве необязательной опции, лишь спустя годы автозаводы стали включать его в обязательную комплектацию автомобилей.
Конструкция спидометра, изобретенная в 1916 году Николой Тесла, дошла до нынешних дней, практически не претерпев изменений.

В качестве привода спидометров используется электропривод или гибкий вал (механический привод, который обычно называют «тросиком спидометра»). Тип привода спидометра зависит от удаленности прибора и места его присоединения к трансмиссии автомобиля.

Гибкие валы для привода рекомендуют устанавливать, если длина трассы не превышает 3,55 метра . При большей длине трассы рекомендуется электропривод.
Привод спидометра осуществляется от ведомого вала коробки передач или раздаточной коробки. Для этого в узле, от которого осуществляется привод, устанавливается редуктор, передаточное число которого выбирают в зависимости от передаточного числа главной передачи и радиуса качения колеса автомобиля.
Редуктор соединяют со спидометром либо механическим путем (гибким валом), либо электрическим (посредством специального датчика). Сигнал с редуктора (или приводимого от редуктора датчика) поступает на спидометр, где преобразуется в соответствующую информацию.

Дополнительную информацию об автомобильных спидометрах и их приводах можно получить .

Спидометры с механическим приводом (от гибкого вала)

Все спидометры с приводом от гибкого вала имеют одинаковый принцип действия и отличаются лишь особенностями исполнения скоростного и счетного узлов и внешним оформлением.

На рис. 1 приведен спидометр с механическим приводом (от гибкого вала), который приводится в действие от входного валика 1 с гнездом квадратного сечения, в которое вставляется квадратный наконечник гибкого вала. На другом конце входного валика закреплены постоянный магнит 5 и термокомпенсационная шайба (магнитопровод) 4 . Магнит 5 намагничен так, что его полюсы направлены к краям диска.


Рис. 1 . Спидометр с приводом от гибкого вала: 1 - входной валик; 2 - фетровый фитиль; 3 - заглушка; 4 - шайба; 5 - магнит; 6 - катушка; 7 - экран; 8 - ось; 9 - рычажок; 10 - спиральная пружина; 11 - стрелка; 12, 13 - валики

На оси 8 , свободно вращающейся в двух подшипниках, с одной стороны закреплена стрелка 11 , а с другой – катушка 6 . Катушка чаще всего выполняется в виде чаши, которая с некоторым зазором охватывает магнит 5 . Катушка изготовляется из немагнитного материала, например из алюминия. Снаружи катушка 6 закрыта экраном 7 из магнитомягкого материала, который концентрирует магнитное поле магнита 5 в зоне катушки.
Со стороны стрелки к оси 8 одним концом прикреплена спиральная пружина 10 . Другой конец пружины прикреплен к рычажку 9 , поворотом которого можно регулировать натяжение спиральной пружины.

При движении автомобиля от гибкого вала приводится во вращение входной валик 1 и вместе с ним магнит 5 . При этом его магнитный поток, пронизывая катушку 6 , наводит в ней вихревые токи, которые вызывают образование магнитного поля катушки.
Два магнитных поля (магнита и катушки) взаимодействуют между собой таким образом, что на катушку действует крутящий момент, направление которого противоположно моменту, создаваемому пружиной. В результате катушка вместе с осью и стрелкой повернется на угол, при котором возрастающий момент сил упругости пружины станет равным моменту магнитных сил, действующих на катушку.
Так как крутящий момент катушки пропорционален скорости вращения магнита, а, следовательно, и скорости движения автомобиля, угол поворота катушки и стрелки с увеличением скорости возрастают.

Термокомпенсационная шайба 4 , установленная вместе с магнитом 5 , нейтрализует влияние изменения температуры окружающей среды на сопротивление катушки. Увеличение сопротивления катушки приводит к уменьшению наводимых в ней токов и вызываемого ими магнитного потока. Шайба 4 при этом обеспечивает увеличение магнитного потока, пронизывающего катушку путем изменения магнитной проницаемости.

Валик 1 большинства спидометров снабжен масленкой, установленной в хвостовой части спидометра. Она состоит из заглушки 3 с отверстием, и расположенным под ней фетровым фитилем 2 , который пропитан маслом и смазывает валик.

Привод счетного узла осуществляется от входного валика 1 через валики 12 и 13 посредством трех понижающих червячных передач, соединенных последовательно. Червячные передачи обеспечивают передаточное отношение 624 или 1000 .

По конструкции счетные узлы бывают с внешним и внутренним зацеплением счетных барабанчиков. Обычно счетный узел содержит шесть барабанчиков, которые свободно насажены на одной оси.
При внешнем зацеплении (рис. 2 ) каждый барабанчик 7 с одной стороны имеет 20 зубцов 4 , находящихся в постоянном зацеплении с зубцами трибок 8 , также свободно вращающихся на своей оси.
Со стороны, противоположной зубчатой, барабанчики, кроме крайнего левого, имеют два зубца 5 с впадиной между ними. Каждая трибка имеет шесть зубцов. Три зубца трибки со стороны двух зубцов 5 барабанчиков укорочены по ширине через один.


Рис. 2 . Счетный узел с внешним зацеплением: 1, 3 - длинные зубья трибки; 2 - укороченный по ширине зубец трибки; 4 - зубцы барабанчика; 5 - два зубца барабанчика; 6 - выемка, укорачивающая зубец трибки; 7 - барабанчик; 8 - трибка

Крайний правый барабанчик постоянно приводится во вращение червячной передачей. Когда два зубца 5 подходят к укороченному зубцу трибки, они захватывают его и поворачивают на 1/3 оборота. При этом следующий барабанчик поворачивается на 1/10 оборота.
Повернувшаяся трибка после поворота устанавливается так, что при следующем проходе зубцов 5 они опять захватят укороченный зубец.
Остановиться в другом положении трибка не может, так как этому мешают длинные зубцы, скользящие по цилиндрической части барабанчика.

Таким образом обеспечивается поворот каждого барабанчика на 1/10 при полном повороте предыдущего. При такой конструкции через каждые 100 тыс. оборотов начального (правого) барабанчика, полный оборот которого соответствует 1 км пробега автомобиля, все барабанчики возвращаются в исходное положение, и отсчет показаний начинается с нуля.

На рис. 2 приведено устройство спидометра 16.3802, устанавливаемого на автомобили марки УАЗ. Спидометр 16.3802 механический, с приводом с помощью гибкого вала от раздаточной коробки. Состоит из стрелочного указателя скорости движения автомобиля и суммарного счетчика пройденного пути. Оснащен индикатором включения дальнего света фар.


Рис. 2 . Спидометр автомобиля УАЗ: 1 - приводной валик; 2 - фильц с запасом смазки; 3 - отверстие для смазки; 4 - постоянный магнит; 5 - катушка; 6 - возвратная пружина стрелки; 7 - регулировочная пластина натяжения пружины; 8 - подшипник оси стрелки; 9 - кронштейн барабанчиков; 10 - стрелка; 11 - ось стрелки; 12 - ось барабанчиков; 13 - шестерня счетного барабанчика; 14 - корпус механизма; 15 - промежуточный червячный валик; 16 - горизонтальный червячный валик; 17 - экран; 18 - стойка стрелки; 19 - кронштейн трибки; 20 - трибка; 21 - счетный барабанчик; 22 - запорная пластина

Основные характеристики спидометра 16.3802:

  • Диапазон показаний скорости, км/ч: 0-120 ;
  • Цена деления, км/ч: 5 ;
  • Емкость счетчика пройденного пути, км: 99999,9 ;
  • Число оборотов приводного вала, соответствующее 1 км пробега: 624 ;
  • Посадочный диаметр кожуха (мм ): 100 ;
  • Присоединительные размеры с гибким валом, мм: М18×1,5 квадрат 2,67 ;
  • Масса, кг: 0,54 .

Спидометры с электроприводом

Спидометры с электроприводом имеют такие же магнитоиндукционный и счетный узлы, как и спидометры с механическим приводом.
Электропривод спидометра состоит из датчика, который устанавливается на коробке передач, электродвигателя, вращающего приводной валик магнитоиндукционного узла указателя и устройства электронного управления электродвигателем. Электродвигатель и устройство управления смонтированы в одном корпусе с магнитоиндукционным узлом.


Датчик электропривода представляет собой трехфазный генератор переменного тока, ротором которого служит постоянны четырехполюсный магнит. Как и гибкий вал, ротор датчика приводится во вращение от ведомого вала коробки передач.
При вращении ротора в каждой фазе статора, соединенного «звездой» (рис. 4 ), вырабатывается переменная синусоидальная ЭДС, частота которой пропорциональна частоте вращения вала КПП, а значит, и скорости движения автомобиля. Сигнал каждой фазы статора управляет транзисторами VT1, VT2 и VT3 , работающих в режиме электрического ключа.

Цепи коллектор-эмиттер транзисторов включены в цепи фазных обмоток трехфазного синхронного двигателя. Ротором электродвигателя служит четырехполюсный постоянный магнит. Когда с фазной обмотки датчика на базу соответствующего транзистора поступает положительная полуволна ЭДС, он открывается, и по соответствующей фазной обмотке электродвигателя будет протекать ток.
Так как фазные обмотки датчика сдвинуты на 120 ˚, то открытие транзисторов будет также сдвинуто во времени. Поэтому магнитное поле статора электродвигателя, создаваемое его обмотками, сдвинутыми также на 120 ˚, будет вращаться с частотой вращения ротора датчика.
Вращающееся магнитное поле статора, воздействуя на постоянный магнит ротора, приводит его во вращение с той же частотой.
Резисторы R1 – R6 в схеме электронного ключа улучшают условия переключения транзисторов.



Тахометры

Приборы, измеряющие частоту вращения коленчатого вала, делятся на тахометры , фиксирующие число оборотов в минуту в данный момент, и тахоскопы – счетчики, показывающие число оборотов вала за определенный момент времени. Тахоскопы используются при испытаниях двигателей после капитального ремонта, и на автомобилях не устанавливаются.

Тахометры применяются на автомобилях, если есть необходимость в контроле частоты вращения коленчатого вала двигателя. По принципу действия манометры бывают центробежные, электрические, электронные (импульсные), магнитные (индукционные), стобоскопические и др. На автомобилях наиболее широкое применение получили электрические тахометры, обеспечивающие дистанционное измерение частоты вращения коленчатого вала.

На дизелях привод тахометра осуществляется от распределительного вала двигателя с помощью гибкого вала или электропривода. Тахометры магнитоиндукционного типа, устанавливаемые для контроля частоты вращения коленчатого вала дизеля, имеют электропривод. Их конструкция аналогична конструкции спидометра с электроприводом. Отличаются они отсутствием счетного узла.

На карбюраторных двигателях для контроля частоты вращения коленчатого вала обычно устанавливаются электронные тахометры, принцип действия которых основан на измерении частоты импульсов, возникающих в первичной цепи системы зажигания при размыкании первичной цепи.

Схема электронного тахометра (рис. 5 ) обеспечивает измерения частоты прерывания тока в первичной цепи системы зажигания.


Рис. 5 . Схема электронного тахометра

Состоит схема из трех узлов: узла формирования запускающих импульсов, узла формирования измерительных импульсов и стрелочного магнитоэлектрического прибора.
На вход тахометра поступает входной сигнал I из первичной цепи системы зажигания. Узел формирования запускающих импульсов, состоящий из резисторов R1, R2 , конденсаторов С1, С2, С3, С4 и стабилитрона VD1 , выделяет из имеющего форму затухающей синусоиды сигнала I сигнал II , имеющий форму одиночного импульса, который поступает на базу транзистора VT1 узла формирования измерительных импульсов.

В исходном состоянии транзистор VT2 открыт, так как через резисторы R11, R10 и R5 по нему протекает ток базы, а конденсатор С5 заряжен.
Транзистор VT1 в это время закрыт, так как потенциал его эмиттера, вызванный значительным падением напряжения на резисторе R5 , больше потенциала базы.
Когда положительный импульс II поступает на базу транзистора VT1 , он открывается. Конденсатор С5 разряжается через открытый транзистор VT1 , создавая на базе транзистора VT2 отрицательное смещение, которое его запирает.

Транзистор VT1 поддерживается открытым током базы, протекающим через резисторы R11, R9, R8 и R5 . Открытый транзистор VT1 обеспечивает протекание тока по измерительному прибору через резисторы R11, R7, R3 и R5 .
Длительность импульса III тока, протекающего по измерительному прибору, определяется временем разряда конденсатора С5 .
После разряда конденсатора С5 транзистор VT2 открывается, так как исчезает отрицательное смещение на его базе, а транзистор VT1 закрывается.

Частота импульсов III тока равна частоте размыканий первичной цепи системы зажигания. Эффективное значение импульсов тока I эф , пропорциональное их частоте, показывает прибор.

Переменным резистором R7 при настройке регулируют амлитуду импульсного тока.
Терморезистор R3 компенсирует температурную погрешность прибора.
Диод VD2 служит для защиты транзистора VT1 .
Стабилитрон VD3 обеспечивает стабилизацию напряжения питания прибора.



Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.

Виды измерителей скорости

Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели. Существуют следующие разновидности измерителей скорости:

  • Спидометр.
  • Радар.
  • Анемометр.
  • Хронограф.
  • Измеритель газового потока.
  • Скоростемер для воды.
Спидометр

Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.

Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.

Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.

Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.

Радар

Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.

Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.

Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.

Анемометр

Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.

В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.

Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.

Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.

Хронограф

Хронограф – это универсальное оборудование, которое используется для различных целей. Одним из способов его применения является измерение скорости движения пули выпущенной из пневматического или огнестрельного оружия. Главные особенности таких устройств в том, что они дают точные показатели скорости движения мелких объектов. Такой измеритель скорости даст возможность снять показатели о характеристиках движения стрелы выпущенной из лука, болта из арбалета или камушка из рогатки.

Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.

Дульный хронограф устанавливается на дуло пневматического или огнестрельного оружия. С его помощью удастся определить начальную скорость вылета пули. По этому показателю можно судить о мощности оружия и его пробиваемой силе на определенном расстоянии. Чтобы подключить хронограф к дулу оружия требуется наличие специального переходника. Для разных типов оружия переходник отличается, но сам измеритель скорости пули может использоваться практически всегда. Хронографы, которые применяются для пневматического оружия, имеют диапазон измерения до 350-400 м/с. Оборудование для огнестрельного оружия имеют значительно больший диапазон чувствительности.

Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.

Измеритель скорости газового потока

Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.

Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.

Скоростемер для воды

Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw