Сравнения AGP и. Техническая документация

Главная / Запчасти 

Cтандарты РСI и AGP

Шина PCI

Едва карта VLB успела закрепиться на рынке, как в июне 1992 года фирма Intel изготовила новую шину - шину PCI (Peripheral Component Interconnect ). Именно этот "периферийный соединительный компонент" находится в большинстве современых компьютеров, де-факто став стандартом для шинной индустрии нашего времени.

Разработчики шины поставили своей целью создать принципиально новый интерфейс, который бы не являлся усовершенствованиями других технологий (как, например EISA), не зависел от платформы (то есть мог работать с будущими поколениями процессоров), имел высокую производительность и был дешев в производстве. Ну а если за дело взялась Intel, то можно было не сомневаться, что цель будет достигнута. Благодаря отказу от использования шины процессора шина PCI оказалась не только процессоронезависимой, но и могла работать самостоятельно, не обращаясь к последней с запросами. Например, процессор может работать с памятью, в то время как по шине PCI передаются данные. Основополагающим принципом шины PCI является применение так называемых мостов (Bridges ), которые осуществляют связь шины с другими компонентами системы (например, PCI to ISA Bridge ). Другой особенностью является реализация так называемых принципов Bus Master и Bus Slave . Например, карта PCI-Master может как считывать данные из оперативной памяти, так и записывать их туда без обращения к процессору. Карта PCI-Slave (например, графический контроллер), как вы, наверное, уже догадались, может только считывать данные.


В чем же секрет столь широкой распрстраненности этой шины в сегодняшнем мире персональных компьютеров?

  • Синхронный 32-х или 64-х разрядный обмен данными (правда, насколько мне известно, 64-разрядная шина в настоящее время используется только в Alpha-системах и серверах на базе процессоров Intel Xeon, но, в принципе, за ней будущее). При этом для уменьшения числа контактов (и стоимости) используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям
  • Шина поддерживает метод передачи данных, называемый linear burst (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) одним куском, то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов
  • В шине PCI используется совершенно отличный от ISA способ передачи данных. Этот способ, называемый способом рукопожатия (handshake ), заключается в том, что в системе определяется два устройства: передающее (Iniciator ) и приемное (Target ). Когда передающее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (Iniciator Ready ), при этом приемное устройство записывает их (данные) в свои регистры и подает сигнал Target Ready , подтверждая запись данных и готовность к приему следующих. Установка всех сигналов производится строго в соответствии с тактовыми импульсами шины
  • Относительная независимость отдельных компонентов системы. В соответствии с концепцией PCI передачей пакета данных управляет не CPU, а мост, включенный между ним и шиной PCI (Host Bridge Cashe/DRAM Controller ). Процессор может продолжать работу и тогда, когда происходит обмен данными с RAM. То же происходит и при обмене данными между двумя другими компонентами системы
  • Низкая нагрузка на процессор. Эта особенность вытекает из предыдущей
  • Частота работы шины 33 MHz или 66 MHz позволяет обеспечить широкий диапазон пропускных способностей (с использованием пакетного режима):
    • 132 МВ/сек при 32-bit/33 MHz
    • 264 MB/сек при 32-bit/66 MHz
    • 264 MB/сек при 64-bit/33 MHz
    • 528 МВ/сек при 64-bit/66 MHz

    При этом для работы шины на частоте 66 MHz необходимо, чтобы все периферийные устройства работали на этой частоте

  • Поскольку шина процессора и шина расширения PCI соединены с помощью главного моста (Host Bridge ), то последняя может работать с CPU последующих поколений
  • Полная поддержка multiply bus master (например, несколько контроллеров жестких дисков могут одновременно работать на шине)
  • Поддержка 5V и 3.3V логики. Разъемы для 5 и 3.3V плат различаются расположением ключей

    Существуют и универсальные платы, поддерживающие оба напряжения. Заметим, что частота 66 MHz поддерживается только 3.3 V логикой

  • Поддержка write-back и write-through кэша
  • PCI приспособлена для распознавания аппаратных средств и анализа конфигурации системы в соответствии со стандартом Plug&Play, разработанным корпорацией Intel. Спецификация шины PCI определяет три типа ресурсов: два обычных (диапазон памяти и диапазон ввода/вывода, как их называет компания Microsoft) и configuration space - конфигурационное пространство. Оно состоит из трех регионов:
    • Заголовка, независимого от устройства (device-independent header region )
    • Региона, определяемого типом устройства (header-type region )
    • региона, определяемого пользователем (user-defined region )

    В заголовке содержится информация о производителе и типе устройства - поле Class Code (сетевой адаптер, контроллер диска, мультимедиа и так далее) и прочая служебная информация.

    Следующий регион содержит регистры диапазонов памяти и ввода/вывода, которые позволяют динамически выделять устройству область системной памяти и адресного пространства. В зависимости от реализации системы конфигурация устройств производится либо BIOS (при выполнении POST - Power On-Self Test ), либо программно. Базовый регистр expansion ROM аналогично позволяет отображать ROM устройства в системную память. Поле CIS (Card Information Structure ) pointer используется картами cardbus (PCMCIA). Последние 4 байта региона используются для определения прерывания и времени запроса/владения

  • Спецификация шины позволяет комбинировать до восьми функций на одной карте (например, видео+звук и прочее)
  • Шина позволяет устанавливать до 4 слотов расширения, однако возможно использование моста PCI to PCI для увеличения их количества
  • PCI-устройства оборудованы таймером, который используется для определения максимального промежутка времени, в течении которого устройство может занимать шину
  • При разработке шины в ее архитектуру были заложены передовые технические решения, позволяющие использовать шину в будущем и модернизировать ее

Назначение выводов 32-разрядного слота PCI (33 MHz)

Вывод Сигнал (cторона пайки) Сигнал (сторона монтажа) Вывод Сигнал (сторона пайки) Сигнал (сторона монтажа)
1 TRST# -12 V 48 GND AD10
2 +12 V TCK 49 AD09 GND
3 TMS GND 50 GND/5 V GND/5 V
4 TDI TDO 51 GND/5 V GND/5 V
5 +5 V +5 V 52 C/BE0 AD08
6 INTA# +5 V 53 +3.3 V AD07
7 INTC# INTB# 54 AD06 +3.3 V
8 +5 V INTD# 55 AD04 AD05
9 Зарезервировано PRSNT1# 56 GND AD03
10 +5 V Зарезервировано 57 AD02 GND
11 Зарезервировано PRNST2# 58 AD00 AD01
12 GND/3.3 V GND/3.3 V 59 +5 V +5 V
13 GND/3.3 V GND/3.3 V 60 REQ64# ACK64#
14 Зарезервировано Зарезервировано 61 +5 V +5 V
15 RST# GND 62 +5 V +5 V
16 +5 V CLK 63 GND Зарезервировано
17 GNT# GND 64 C/BE7# GND
18 GND REQ# 65 C/BE5# C/BE6#
19 Зарезервировано +5 V 66 +5 V C/BE4#
20 AD30 AD31 67 PAR64 GND
21 +3.3 V AD29 68 AD62 A63
22 AD28 GND 69 GND A61
23 AD26 AD27 70 AD60 +5 V
24 GND AD25 71 AD58 AD59
25 AD24 +3.3 V 72 GND AD57
26 ISDEL C/BE3# 73 AD56 GND
27 +3.3 V AD23 74 AD54 AD55
28 AD22 GND 75 +5 V AD53
29 AD20 AD21 76 AD52 GND
30 GND AD19 77 AD50 AD51
31 AD18 +3.3 V 78 GND AD49
32 AD16 AD17 79 AD48 GND
33 +3.3 V C/BE2# 80 AD46 AD47
34 FRAME# GND 81 GND AD45
35 GND IRDY# 82 AD44 GND
36 TRDY# +3.3 V 83 AD42 AD43
37 GND DEVSEL# 84 +5 V AD41
38 STOP# GND 85 AD40 GND
39 +3.3 V LOCK# 86 AD38 AD39
40 SDONE PERR# 87 GND AD37
41 SBO# +3.3 V 88 AD36 +5 V
42 GND SERR# 89 AD34 AD35
43 PAR +3.3 V 90 GND AD33
44 AD15 C/BE1# 91 AD32 GND
45 +3.3 V AD14 92 Зарезервировано Зарезервировано
46 AD13 GND 93 GND Зарезервировано
47 AD11 AD12 94 Зарезервировано GND

В настоящее время используется 32-разрядная шина PCI, работающая на частоте 33 MHz, то есть самая медленная спецификация шины. Но уже сегодня получающихся при этом 132 Mb/s начинает нехватать (кстати, по скоростным показателям PCI сейчас висит на краю системы, как когда-то висела ISA). Поэтому вполне логично, что в ближайшем будущем будут использоваться более скоростные стандарты PCI. Скорее всего, это будет 33-мегагерцевая 64-разрядная шина, так как не все карты, предназначенные для работы на 33 мегагерцах, смогут работать на 66. То, что появится какой-нибудь новый стандарт, претендующий на место нынешней шины в наших компьютерах, маловероятно, во-первых, потому, что PCI получила за эти годы очень большую популярность, и мало кто захочет отказываться от тех PCI-устройств, которые уже выпущены и выпускаются в грандиозных количествах а, во-вторых, потому, что вряд ли Intel допустит появление на рынке конкурента (если, конечно, инициатива не будет исходить не от самой Intel, но это вряд ли). В общем, поживем еще немного - увидим, а сейчас давайте не будем делать каких-либо поспешных прогнозов.

Шина AGP

Получившая в последнее время большое распространение 3D-графика, а также все возрастающая нагрузка на PCI со стороны разных там жестких дисков, сетевых карт и других высокоскоростных устройств привели к тому, что пропускной способности локальной шины для удовлетворения всех этих требований начало явно недоставать. Казалось бы, вот вам простейшее решение: переходите на 66-мегагерцовую 64-разрядную шину PCI, так нет же. Intel на базе того же стандарта PCI R2.1 разрабатывает новую шину - AGP (1.0, затем 2.0), которая отличается от своего родителя в следующем:

  • Шина способна передавать два блока данных за один 66 MHz цикл (AGP 2x)
  • Устранена мультиплексированность линий адреса и данных (напомню, что в PCI для удешевления конструкции адрес и данные передавались по одним и тем же линиям)
  • дальнейшая конвейеризация операций чтения/записи, по мнению разработчиков, позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций

В результате пропускная способность шины была оценена в 500 МВ/сек, и предназначалась она для того, чтобы графические карты могли хранить необходимые им данные (текстуры) не только в своей дорогой локальной памяти, установленной на борту, но и в дешевой системной памяти компьютера. При этом они (карты) могли иметь меньший объем этой самой локальной памяти и, соответственно, дешевле стоить.


Принципиально AGP - это вторая магистраль PCI, которая соединена с другими компонентами системы специальным мультимедиа-мостом (Multimedia Bridge ).

Парадокс в том, что видеокарты (точнее, их производители) все-таки предпочитают иметь больше памяти, и почти никто не хранит текстуры в оперативной памяти. Во первых, пока еще (но только пока) в современных приложениях не используются такие грандиозные по размеру текстуры, которые требовали бы чересчур много памяти. Во вторых, видеопамять быстро дешевеет и ее увеличение не сильно сказывается на стоимости видеокарты (сейчас карта с 64 Mb стоит почти столько же, как всего год-полтора назад стоила похожая карта с 32 Mb памяти). Хотя главная причина, очевидно, в том, что системная RAM имеет куда меньшее быстродействие, чем локальная видеопамять, и использовать все то, что может предоставить AGP, было бы вряд ли рационально, пусть даже от этого уменьшилась цена видеоадаптера. Тем не менее, все современные видеоккарты имеют интерфейс AGP, потому что, во первых, даже если не использовать прокачку текстур между системной памятью и видеоадаптером, при большой нагрузке на шину PCI со стороны периферии данные от различных устройств (например, процессора или платы видеомонтажа) могут не успевать поступать в видеокарту настолько быстро, насколько это нужно, и, во-вторых, бурно развивающиеся технологии 3D-графики скоро могут привести к тому, что текстуры перестанут помещаться в локальную видеопамять (если, конечно, в системе установлена не самая наворочанная видеоплата с большим объемом RAM). Да и потом, если учесть мощности современных CPU, шина PCI со своими 132 мегабайтами в секунду смотриться очень хило даже для простого обмена данными видеоконтроллера с центральным процессором и другими компонентами системы, так что появление в свое время AGP было действительно востребовано, а сейчас без этого интерфейса просто невозможно представить современный персональный компьютер.

Итак, начнем с самого начала, то есть с AGP 1.0. Шина имеет два основных режима работы: Execute и DMA . В режиме DMA основной памятью является память карты. Текстуры хранятся в системной памяти, но перед использованием копируются в локальную память карты. Таким образом, AGP действует в качестве тыловой структуры, обеспечивающей своевременную доставку "патронов" (текстур) на "передний край" (в локальную память). Обмен ведется большими последовательными пакетами.

В режиме Execute локальная и системная память для видеокарты логически равноправны. Текстуры не копируются в локальную память, а выбираются непосредственно из системной. Таким образом, приходится выбирать из памяти относительно малые случайно расположенные куски. Поскольку системная память выделяется динамически, блоками по 4 Кb, в этом режиме для обеспечения приемлемого быстродействия необходимо предусмотреть механизм, отображающий последовательные адреса на реальные адреса 4-х килобайтных блоков в системной памяти. Эта нелегкая задача выполняется путем использования специальной таблицы (Graphic Address Re-mapping Table или GART), расположенной в памяти.

Шина AGP полностью поддерживает операции шины PCI, поэтому AGP-трафик может представлять из себя смесь чередующихся AGP и PCI операций чтения/записи. Операции шины AGP являются раздельными. Это означает, что запрос на проведение операции отделен от собственно пересылки данных. Такой подход позволяет AGP-устройству генерировать очередь запросов, не дожидаясь завершения текущей операции, что также повышает быстродействие шины.

В 1998 году спецификация шины AGP получила дальнейшее развитие - вышел Revision 2.0. В результате использования новых низковольтных электрических спецификаций появилась возможность осуществлять 4 транзакции (пересылки блока данных) за один 66-мегагерцовый такт (AGP 4x), что дает пропускную способность шины в 1Gb/s. Единственное, чего не хватает для полного счастья, так это чтобы устройство могло динамически переключаться между режимами 1х, 2х и 4х, но, с другой стороны, это никому и не нужно.

Однако потребности и запросы в области обработки видеосигналов все возрастают, и Intel приготовила новую спецификацию - AGP Pro - направленную на удовлетворение потребностей высокопроизводительных графических станций. Новый стандарт не видоизменяет шину AGP. Основное направление - увеличение энергоснабжения графических карт. С этой целью в разъем AGP Pro добавлены новые линии питания.

Вообще говоря, существует два типа карт AGP Pro - High Power и Low Power . Карты High Power могут потреблять от 50 до 110 W. Естественно, такие карты нуждаются в хорошем охлаждении. С этой целью спецификация требует наличия двух свободных слотов PCI с component side (стороны, на которой размещены основные чипы карты).


Причем данные слоты могут использоваться картой как дополнительные крепления, для подвода дополнительного питания и даже для обмена по шине PCI. При этом на использование этих слотов накладываются незначительные ограничения:

  • Не использовать для питания линии V I/O
  • Не устанавливать линию M66EN (контакт 49В) в GND (что вполне естественно, так как это переводит шину PCI в режим 33 MHz)
  • Подсистема PCI I/O должна разрабатываться под напряжение 3.3V c возможностью функционирования при 5 V
  • Поддержка 64-разрядного или 66 MHz режимов не требуется

Карты Low Power могут потреблять 25-50 W, поэтому для обеспечения охлаждения спецификация требует наличия только одного свободного слота PCI.


Причем все retail-карты AGP Pro должны иметь специальную накладку шириной соответственно в 3 или 2 слота, из-за этого карта приобретает вид достаточно устрашающий.

В разъем AGP Pro, естественно, можно устанавливать и обычные карты AGP.


Где-то с начала 2001-го года слоты AGP Pro начал вытеснят обычный AGP на большинстве серьезных материнских плат - производители, видно, стали считать, что негоже делать дорогие продукты без поддержки новейших веяний в области компьютерных технологий. Вот только самих видеоплат, которые требовали бы этого разъема, не так-то много. Например, просмотрев прайсы нескольких весьма солидных фирм, торгующих компьютерными комплектующими, я так и не увидел нигде рядом с названием видеокарты соответствуюющей пометочки. Впрочем, это и не удивительно, так как новая спецификация рассчитана прежде всего на профессиональные графические станции, а не на обычный ширпотребный РС (о которых, собственно, и идет речь на страницах этого сайта). Хотя, с другой стороны, можно предположить, что по прошествии некоторого времени начнут активно выпускаться и обычные "пользовательские" карточки, так как при все большей мощности видеочипов и увеличения потребляемого ими тока действительно может потребоваться такое солидное охлаждение и питание - ведь вешают же сейчас на некотрые видеокарты чуть ли не килограммовые радиаторы с вентиляторными лопастями как у вертолета, и эти видеокарты часто не удается заставить сколь-либо нормально работать с дешевыми блоками питания мощностью менее 250 VA (в связи с этим, кстати, было даже как-то придумано решение оснащать плату собственным внешним блоком питания). Закрадывается мысль, что когда-нибудь компьютеры будут продаваться в комплекте с портативной атомной электростанцией, и в них будет использоваться система жидкостного охлаждения! Опять-таки, поживем - увидим.

Чтобы, не меняя уже сложившийся стандарт на шину РС1, ускорить ввод/вывод данных на видеоадаптер и, кроме того, увеличить производительность PC при обработке трехмерных изображений без установки специализированных дорогостоящих двухпроцессорных видеоадаптеров, в 1997 г. фирмой Intel был разработан стандарт на шину AGP (Accelerated Graphics Port). AGP является каналом передачи данных между видеоадаптерами и памятью RAM, а также системной шиной процессора, при этом не пересекаясь с шиной РС1.

Примечание Из-за проблем с совместимостью видеокарт с различными спецификациями AGP, что в тяжелых случаях вызывало выгорание материнской платы и видеоадаптера, шина AGP в новых разработках не используется.

Шина AGP - это высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (ЗО-акселератор) с системной памятью PC, поэтому на материнской плате имеется только один разъем (слот) AGP. Поскольку шину AGP использует только одно устройство, не возникает характерной для шины РС1 проблемы арбитража (когда несколько устройств одновременно требуют доступа к шине), что повышает скорость обмена данными между видеоадаптером и системной памятью.

Шина AGP была разработана на основе архитектуры шины РС1, поэтому она также является 32-разрядной.

Вместе с тем, у нее имеется ряд важных отличий от шины PCI, позволяющих в несколько раз увеличить пропускную способность.

Использование более высоких тактовых частот.

Демультиплексирование (режим SBA).

Пакетная передача данных.

Режим прямого исполнения в системной памяти (DiME).

Режимы работы Если шина PCI в стандартном варианте (32-разрядная) имеет тактовую частоту 33 МГц, что обеспечивает теоретически пропускную способность шины PCI

Рис. 5.4. Структурная схема видеосистемы на основе шины AGP

33 - 32 = 1056 бит/с = 132 Мбайт/с. то шина AGP тактируется сигналом с частотой 66 МГц. поэтому ее пропускная способность составляет 66 - 32 = 264 Мбайт/с (это соответствует так называемому режиму 1П). Помимо режима 1 - . стандартом AGP Revision 1.0 предусмотрен режим 2D. при котором передача данных производится не только по переднему, но и по заднему фронту тактового импульса. В режиме 2D эквивалентная тактовая частота составит 132 МГц. а пропускная способность - 528 Мбайт/с.

В последних версиях шины AGP. использующих пониженное напряжение питания, за один такт синхронизации удается выполнить уже не две. а четыре или восемь передач (режимы 4П и 8).

В самом общем виде структурная схема видеосистемы на основе AGP может быть представлена так. как показано на рис. 5.4.

Конструктивно разъем AGP напоминает слот РСТ. однако он несколько выше, поскольку контакты в разъеме AGP расположены в два этажа. В зависимости от поддерживаемого напряжения питания различают несколько типов слотов AGP. Поддерживающие режимы карты обычно имеют универсальный разъем с двумя прорезями (рис. 5.5).


Рис. 5.5. Универсальный разъем шины AGP у видеоадаптера

Стандарты подключения устройств

Для подключения внутренних и внешних устройств к материнской плате используются следующие основные шины:

· шина AGP;

· шина USB;

· шина IEEE 1394 (FireWire);

Устройства внешней памяти подключаются к компьютеру с помощью интерфейсов IDE (ATA), SATA и eSATA.

Интерфейсы SCSI и SAS также используются для подключения устройств внешней памяти, однако к ним можно подключить и другие устройства.

Для беспроводного подключения устройств к компьютеру можно использовать и беспроводные порты: IrDA и Bluetooth.

Порт Ethernet можно использовать как для подключения некоторых видов устройств к компьютеру, так и для подключения компьютера к телекоммуникационной сети Ethernet.

Беспроводное подключение устройств к компьютеру можно выполнить и с помощью порта Wi-Fi. Этот порт позволяет также подключить компьютер к беспроводной сети Wi-Fi.

Некоторые интерфейсы и порты компьютера являются устаревшими, хотя они до сих пор входят в состав материнской платы. Это

· интерфейс FDD;

· параллельный порт;

· последовательный порт;

· порт PS/2;

· игровой порт.

Несмотря большую скорость шины PCI, ее возможностей становится недостаточно в условиях растущей нагрузки на видеосистему (видеокарту и монитор), поскольку реализация трехмерной графики и видео требует передачи больших объемов данных между монитором, процессором и оперативной памятью. Поэтому фирмой Intel в 1997 г. был разработан стандарт на шину AGP (Accelerated Graphics Port – ускоренный графический порт) – канал передачи данных между видеокартой и оперативной памятью на основе стандарта PCI. Этот стандарт предназначен для увеличения производительности компьютера при обработке трехмерных изображений без установки специализированных дорогостоящих видеокарт.

Поскольку шинаAGP 32-разрядная и ее тактовая частота равна тактовой частоте системной шины (66 МГц), то в стандартном режиме ее пропускная спо­собность, составляющая 266 Мб/с, в два раза превышает пропускную спо­собность шиныPCI.

Для повышения пропускной способности шины был разработан режим AGP2X (спецификация AGP 1.0), в котором данные передаются в два раза быстрее (532 Мбайт/с). Это дости­гается за счет воз­можности управления чтением/записью данных по фронтам и срезам такто­вых импульсов, что позволяет передавать два блока данных за один такт работы шины AGP.

В 1998 г. корпорация Intel разработала новую спецификацию (AGP 2.0) стандарта AGP – AGP4X. Реализация передачи четырех блоков данных за один такт привело к увеличению скорости передачи до 1 Гбайта/с.

Дальнейшим развитием стандарта AGP является режим AGP8X (спецификация AGP 3.0, принятая в 2002 г.), в котором скорость передачи увеличилась до 2 Гбайт/с за счет передачи восьми блоков данных за один такт.

Разъем AGP8X приведен на рис. ????.

Рис. ?????. Разъем AGP8X

Одной из основных особенностей стандарта AGP является способность раз­делить оперативную память между центральным процессором и видеоадаптером, т.е. обработка трехмерных изображений выполняется в оперативной памяти как центральным процессором, так и процессором в видеоадаптере.

В настоящее время корпорация Intel прекратила поддержку шины AGP, которая постепенно заменяется шиной PCI Express, хотя материнские платы и видеокарты с шиной AGP все еще выпускаются.

Аббревиатура AGP либо вам знакома, либо вы не любите играть на компьютере. Так обозначается популярная разновидность системной шины, имеющая особый формат разъема для подключения плат расширения. Существует немало карт расширения, предназначенных для данной 32-разрядной шины, и практически все они относятся к категории графических ускорителей. Хотя в настоящее время, начиная с 2010 г., видеокарты для данной шины практически не выпускаются, поскольку она уступила пальму первенства , тем не менее, существует немало компьютеров, имеющих графические ускорители, предназначенные для шины AGP.

За все время существования системной шины персонального компьютера было разработано несколько ее различных стандартов. Однако лишь немногие из этих шин разрабатывались специально для подключения видеокарт. Шина AGP является одним из примеров подобной шины.

Возможно, читателям будет интересно узнать, что же обозначает данная аббревиатура. Она расшифровывается как Accelerated Graphic Port (Ускоренный графический порт). Шина AGP была разработана компанией Intel в 1996 г. в качестве усовершенствования шины PCI, и впервые начала применяться в чипсетах Intel, предназначенных для процессоров Pentium и Pentium 2. В операционных системах семейства Windows поддержка шины появилась, начиная с Windows 95 OSR2 и Windows NT 4.0 SP3.

Основной идеей при разработке шины было не только повышение эффективности видеосистемы компьютера, но и ее удешевление. Это предполагалось достигнуть за счет уменьшения объема оперативной памяти карты, поскольку стандарт Accelerated Graphic Port предполагал улучшенные по сравнению с PCI возможности по использованию основной оперативной памяти компьютера.

За время существования шины было выпущено несколько ее спецификаций, последней из которых стала спецификация 3.0. Кроме того, было разработано несколько стандартов скорости шины, начиная от 1x и кончая 8x.

По мере развития компьютерного «железа», начиная с середины 2000-х гг., стало очевидно, однако, что шина AGP не удовлетворяет новым требованиям, предъявляемым к графическим ускорителям. Поэтому было создано несколько расширений стандарта, например, 64-разрядная шина Accelerated Graphic Port или вариант шины, получивший название Accelerated Graphic Port Pro. Кроме того, некоторыми разработчиками материнских плат был создан ряд неофициальных расширений шины, однако они не получили широкого распространения.

Характеристики и отличие от PCI

До появления шины Accelerated Graphic Port подавляющее большинство графических ускорителей использовало разъем PCI. В отличие от PCI новая шина имела вдвое большую тактовую частоту (66 МГц), а также вдвое более высокую скорость передачи данных (533 МБ/c). Хотя первоначально она имела такое же напряжение питания, как и PCI – 3,3 В, впоследствии, в спецификациях 2.0 и 3.0 оно было уменьшено до 1,5 и 0,8 В соответственно. Также, в отличие от PCI, шина поддерживала прямой доступ к памяти DMA и разделение запросов по обработке данных. Работой шины был призван управлять AGP-контроллер, расположенный в чипсете материнской платы.

Характеристики шины различных версий приведены в нижеследующей таблице:

Стандартный слот AGP имеет 132 контакта (по 66 с каждой стороны). В целом их расположение похоже на расположение контактов шины PCI, однако имеется и несколько дополнительных сигналов. В то же время разъем может иметь несколько вариантов, отличающихся рабочим напряжением. Разъем, рассчитанный на напряжение в 1,5 В, так же, как и разъем, рассчитанный на напряжение в 3,3 В, имеет специальный выступ, который исключает вставку платы неподходящего стандарта. Кроме того, существует и универсальный разъем, который позволяет вставлять в него видеокарты всех типов. Также имеются видеокарты, которые можно вставить в разъем любого типа.

Однако следует иметь в виду, что существуют материнские платы, использующие разъем, рассчитанный лишь на определенное значение напряжения, и при этом не снабженные ключами, исключающими неправильное подключение. Поэтому при установке видеокарт в разъем стоит обращать внимание на данный момент, а также изучить инструкции к материнской плате и видеокарте и сравнить их характеристики, поскольку подключение видеокарты в разъем с неправильным напряжением грозит выходом из строя как карты, так и самого разъема.

Разъем для карт, поддерживающих стандарт Accelerated Graphic Port Pro, тоже имеет два варианта, рассчитанных на разные напряжения – 1,5 В и 3,3 В. Карты обычного стандарта можно вставить в слот типа Pro, однако обратную операцию осуществить невозможно.

Настройка работы шины в BIOS

Возможно, многих читателей интересуют такие вопросы, как включить AGP и как настроить AGP. Для этой цели проще всего обратиться к средствам BIOS Setup. Как таковое включение шины Accelerated Graphic Port в БИОС не производится, она активирована по умолчанию. Но в BIOS можно встретить немало опций, предназначенных для её конфигурирования. Например, при помощи можно включить режим быстрой записи для видеокарты. В этом режиме видеокарта получает данные напрямую от центрального процессора, минуя системную оперативную память, как промежуточное место их хранения. При помощи же , можно установить размер ОЗУ, который будет использован видеокартой с этим интерфейсом. Подробнее о настройке некоторых параметров работы шины вы можете почитать на нашем сайте в разделе, посвященном опциям BIOS («Параметры чипсета»).

Заключение

Хотя сейчас в большинстве материнских плат слот AGP уступил свое место слотам такой высокопроизводительной шины, как PCI Express, тем не менее, внедрение шины Accelerated Graphic Port оказалось в свое время настоящим прорывом в мире графических видеокарт. Кроме того, графические карты этого формата все еще можно встретить во многих работающих компьютерах.

Интерфейсы ПК

Фирма Intel, заметив, что дальнейшее повышение общей производительности персонального компьютера «упирается» в видеоподсистему, в свое время предложила выделить для передачи потока видеоданных отдельную интерфейсную шину AGP (Accelerated Graphics Port - ускоренный графический порт). Этот стандарт быстро вытеснил существовавшие ранее интерфейсы, использовавшиеся видеокартами: ISA, VLB и PCI.
Главным преимуществом шины AGP стала высокая пропускная способность. Если шина ISA позволяла передавать до 5,5 Мбайт/с, VLB - до 130 Мбайт/с, a PCI - до 133 Мбайт/с, то шина AGP теоретически имеет пиковую пропускную способность до 1066 Мбайт/с (в режиме передачи четырех 32-разрядных слов).
Компания Intel разрабатывала интерфейс AGP для решения двух основных проблем, связанных с особенностями обработки ЗD-графики на персональном компьютере. Во-первых, ЗD-графика требует выделять как можно больше памяти для хранения данных текстур и Z-буфера. Чем больше текстурных карт доступно для ЗD-приложений, тем лучше выглядит картинка на экране монитора. Обычно для Z-буфера используют ту же память, что и для текстур. Разработчики видеоконтроллеров и раньше имели возможность использовать обычную оперативную память для хранения информации о текстурах и Z-буфере, но серьезным ограничением здесь выступала пропускная способность шины PCI. Ширина полосы пропускания PCI оказалась мала для обработки графики в режиме реального времени. Эту проблему компания Intel решила путем внедрения стандарта шины AGP. Во-вторых, интерфейс AGP обеспечивает прямое соединение между графической подсистемой и оперативной памятью. Таким образом, выполняются требования вывода ЗD-графики в режиме реального времени и, кроме того, более эффективно используется память буфера кадра (frame buffer), тем самым увеличивается скорость обработки 2 D - г р а ф и ки.
В действительности шина AGP соединяет графическую подсистему с блоком управления системной памятью, разделяя доступ с центральным процессором компьютера. Через AGP возможно подключение единственного типа устройств - графических плат. При этом видеоконтроллеры, встроенные в материнскую плату и использующие интерфейс AGP, не подлежат модернизации.

Для контроллера AGP конкретный физический адрес, по которому информация хранится в оперативной памяти, не имеет значения. Это является ключевым решением новой технологии, обеспечивая доступ к графическим данным как к единому блоку, независимо от физической «разбросанности» информации по блокам памяти. Кроме того, AGP работает с частотой системной шины до 133 МГц.
Спецификация AGP фактически базируется на стандарте PCI версии 2.1, но отличается от него следующими основными особенностями:
шина способна передавать два (AGP 2х), четыре (AGP 4х) или восемь (AGP 8х) блоков данных за один цикл;
устранена мультиплексированность линий адреса и данных;
конвейеризация операций чтения/записи позволяет устранить влияние задержек в модулях памяти на скорость выполнения операций.

Шина AGP работает в двух основных режимах: DIME (Direct Memory Execute) и DMA (Direct Memory Access). В режиме DMA основной памятью считается память на карте. Текстуры могут храниться в системной памяти, но перед использованием копируются в локальную память видеокарты. Таким образом, интерфейс AGP действует в качестве «подносчика патронов» (текстур) к «огневой позиции» (в локальную память). Обмен ведется большими последовательными пакетами данных. В режиме Execute локальная и системная память для видеокарты логически равноправны. Текстуры не копируются в локальную память, а выбираются непосредственно из системной. Таким образом, приходится передавать сравнительно небольшие случайно расположенные куски. Поскольку системная память требуется и другим устройствам, она выделяется динамически, блоками по 4 Кбайт. Поэтому для обеспечения приемлемого быстродействия предусмотрен специальный механизм, отображающий последовательные адреса на реальные адреса блоков в системной памяти. Эта задача выполняется с использованием специальной таблицы (Graphic Address Re-mapping Table или GART), расположенной в памяти. Адреса, не попавшие в диапазон GART (GART range), не изменяются и непосредственно отображаются на системную память или область памяти устройства (device specific range). Точная спецификация на правила функционирования GART не определена, и конкретное решение зависит от управляющей электроники видеокарты.
Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных. Такой подход позволяет AGP-устройству генерировать очередь запросов, не дожидаясь завершения текущей операции, что также повышает быстродействие шины.
Версия AGP 2.0 благодаря использованию низковольтных электрических спецификаций предусматривает осуществление четырех транзакций (пересылок блока данных) за один такт (режим AGP 4х - четырехкратного умножения). В 2003 г. в массовое производство пошли видеокарты с интерфейсом AGP версии 3.0 (часто обозначаются как AGP 8х). Двукратное увеличение пропускной способности достигнуто за счет повышения тактовой частоты шины до 66 МГц и применения нового уровня сигналов 0,8В (в AGP 2.0 использовался уровень 1,5В). Тем самым при сохранении основных параметров интерфейса удалось повысить пропускную способность шины примерно до 2132 Мбайт/с. Хотя разъем сохранился прежним, механически совместимым с AGP 2.0, его электрические характеристики изменились благодаря снижению напряжения на сигнальных линиях. В настоящее время на современных платформах шина AGP заменяется последовательной шиной PCI Express.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw