Вольтметр сетевого напряжения с растянутой шкалой и световой сигнализацией. Вольтметр с растянутой шкалой Кое-что об измерениях

Главная / Безопасность

Для того, чтобы измерить напряжение аккумуляторной батареи автомобиля обычно используется цифровой прибор, поскольку обычный стрелочный не позволяет сделать это с необходимой точностью — ведь ошибка даже в несколько десятых вольта может привести к неправильной оценке состояния аккумулятора или работы генератора.

С другой стороны, для контроля напряжения аккумуляторной батареи совеем не нужна большая часть шкалы, поскольку измерять напряжение приходится в достаточно узком диапазоне – 10 … 15 В. Таким образом, если растянуть шкалу для измерения только в указанном интервале, то стрелочный прибор справится с задачей не хуже гораздо более дорогого цифрового. Постройкой именно такого вольтметра мы сегодня и займемся.

Принципиальная схема вольтметра, работающего в диапазоне 10…15 В представляет собой мост, в диагональ которого включен микроамперметр с током полного отклонения 50 мкА (к примеру, М1690А). В одно плечо моста включен стабилитрон VD1 с токоограничивающим резистором R1, в другое — делитель, состоящий из резисторов R3, R4, R5. Резистор R2 служит для задания диапазона измерения. Переключатель S1, который в режиме «Перевозка» закорачивает головку РА1 и препятствует колебаниям стрелки при тряске, служит для безопасной транспортировки прибора. На месте VD1 вместо указанного на схеме может работать Д818 с любым буквенным обозначением, в качестве РА1 – любой микроамперметр с током полного отклонения 50 …100 мкА. Резисторы R2 и R5 имеет смысл использовать многооборотные (к примеру, СП3-36 и СП5-2В).

Резисторы типа СП3-36 нужного нам номинала широко использовались в электронных селекторах каналов телевизоров 3-4 поколения выпуска СССР

Поскольку шкала нашего прибора практически линейна, уже перед настройкой ее можно проградуировать, поставив в начало значение 10 В, а в верхний предел — 15 В. Всю шкалу между этими значениями равномерно градуируем с необходимой точностью.
Для настройки прибора понадобится регулируемый источник питания напряжением 0 … 15 В и контрольный вольтметр с наиболее возможной точностью измерения. Налаживание прибора выполняется в следующей последовательности:

1. Подключаем БП к зажимам нашего прибора (Х1 и Х2) и плавно увеличиваем напряжение до 10 В, постоянно контролируя его по образцовому вольтметру.
2. При напряжении 10 В подстройкой резистора R5 устанавливаем стрелку измерительного прибора РА1 на нулевую отметку.
3. Увеличиваем напряжение до 15 В и подстройкой резистора R2 устанавливаем стрелку прибора РА1 на конечную отметку шкалы.

При необходимости несколько раз повторяем пункты 2, 3 и при точных верхнем и нижнем показаниях прибора настройку можно считать законченной. На регулировочные винты наносим по капле краски или любого лака, а саму схему помещаем в ударопрочный корпус подходящих размеров.

Как сделать новую шкалу для стрелочного прибора October 27th, 2015

Я пока не знаю, в какой именно моддинг-проект пойдёт эта измерительная головка, поэтому решил написать про неё отдельный пост. Информацию выкладываю по горячим следам в прямом и переносном смысле: удачная технология была найдена только вчера.

Итак, у меня в хозяйстве имелся старый стрелочный прибор серии М24, отградуированный как милливольтметр/миллиамперметр. С функциональной точки зрения он был исправен, но вот шкала явно знавала лучшие дни, так что для моих целей он уже не годился.

Раньше, когда меня спрашивали, почему я в своих модах не меняю шкалы приборов, размеченные в каких-то посторонних величинах, я отвечал, что не хочу портить оригинальные старые вещи. И это было правдой, но лишь наполовину: дело в том, что даже если бы я захотел поменять какую-нибудь шкалу на новую, я бы не знал, как это сделать качественно.

Первую попытку приспособить этот прибор для использования в паре с компьютером я предпринял несколько лет назад, когда на основе скана оригинальной шкалы нарисовал свою и напечатал её на старой бумаге.

Шкала, откровенно говоря, вышла из рук вон плохо. Выглядела она некрасиво, жёлтый цвет бумаги не сочетался с другими деталями, а цена деления в нижней её части вообще получилась дробной.

Поэтому этот прибор я нигде не использовал и надолго убрал в ящик. Но недавно я его оттуда извлёк и решил на этот раз сделать всё как следует. Первым делом я подключил его к источнику напряжения и точно отградуировал, поставив карандашные отметки от 0 до 100 (одну из шкал было решено разметить в процентах, чтобы использовать её для отображения самых разных величин).

Затем я снял временную шкалу и отсканировал её.

Мне хотелось, чтобы новая шкала выглядела красиво и аутентично. Поэтому я покопался в ящике со старыми стрелочными головками и нашёл одну, которая понравилась мне больше всего.

При помощи различных инструментов Фотошопа я по максимуму убрал родной фон и наложил полученное изображение поверх скана с карандашными отметками. По счастливому совпадению, оказалось достаточно лишь немного отмасштабировать новую шкалу, чтобы она идеально совпала с нарисованной. Видимо, приборы имеют однотипные механизмы с нелинейной зависимостью угла отклонения от напряжения — внимательно посмотрев на шкалу, можно заметить, что промежуток от 0 до 1 заметно больше промежутка от 9 до 10.

На следующей картинке видна промежуточная стадия работ: части цифр ещё нет, отдельные участки не перерисованы, виден неубранный «мусор».

Чтобы прибор в итоге выглядел как можно более похожим на настоящий, я не использовал символы из новых шрифтов, а только копировал оригинальные. Если приходилось дважды использовать одну и ту же цифру, я специально немного деформировал её, чтобы не было идеальной цифровой копийности. Такой вот педантизм, возможно, не очень здоровый:-). Мусор пришлось убирать вручную, потому что я не знаю автоматического механизма очистки, который убрал бы пыль, не замылив при этом контуры.

В итоге получилось так:

Первая шкала отображает проценты, вторая — температуру (отградуирована по даташиту термодатчика, который не гарантирует точности показаний ниже ноля), а третья — частоту процессора в мегагерцах. Ностальгическую величину «ИМП / МИН» я оставил, потому что она, что называется, в тему. Из-за постепенного уплотнения делений риски на температурной шкале получились очень мелкими, но этим было решено пренебречь. В самом конце я добавил контур металлической подложки, чтобы шкалу было легко вырезать и приложить по месту.

Надписи с оригинальной шкалы получилось удалить при помощи обычного мыла. Если мыло не поможет, можно попробовать спирт, ацетон, растворитель 646, уксусную кислоту или перекись водорода — в моей практике ещё не было случая, чтобы этот «коктейль» не сработал.

Но это всё была лишь прелюдия, настоящее колдовство ещё впереди. Печать новой шкалы на бумаге я даже не рассматривал, а вместо этого стал думать о том, как бы нанести надписи прямо на оригинальную алюминиевую пластинку. Самым простым, конечно, было бы загрузить её в струйный принтер, переделанный для печати на твёрдых поверхностях (некоторые крутые радиолюбители делают такие для изготовления печатных плат), но это вариант пришлось отмести в силу отсутствия подходящего принтера. Ещё я вспомнил о такой вещи, как металлопечать, но для неё тоже нужно специальное оборудование, а мне хотелось найти метод, который я мог бы использовать дома.

Поэтому было решено освоить другую технологию из арсенала радиолюбителей — ЛУТ («лазерно-утюжную»). Она столько раз описана в интернете, что повторяться не вижу смысла. Если коротко — рисунок при помощи лазерного принтера печатается на какой-нибудь гладкой бумаге в зеркальном отражении, после чего при помощи нагрева переносится на нужную поверхность. Этим способом создают дорожки на печатных платах, но в моём случае последняя технологическая стадия — травление — была не нужна.

Раньше я ЛУТ не применял, поэтому для начала решил потренироваться на кошках. Прочитав множество рекомендаций, я выбрал два промежуточных носителя — полуглянцевые журнальные страницы и фотобумагу неизвестного происхождения.

Фотобумага не подошла, потому что её глянцевое покрытие плавилось под утюгом, а вот журнальные страницы показали себя как нельзя лучше.

Для проверки я сначала попробовал перенести рисунок на фольгированный текстолит, дабы убедиться, что технология соблюдена верно. Результат превзошёл все ожидания: с первого же раза рисунок без каких-либо дефектов перешёл на медь.

Правда, перед этим поверхность пришлось тщательно подготовить: убрать окислы с помощью Cillit Bang, вымыть с мылом и обезжирить бензином.

Окрылённый этим успехом, я попробовал перенести шкалу на черновую алюминиевую пластинку. И тут меня ждало разочарование: хотя я сделал всё в точности так же, как и в прошлый раз, существенная часть тонера осталась на бумаге.

Сколько я ни бился, улучшить этот результат мне не удалось. Алюминий, насколько я знаю, вообще весьма капризный в этом плане металл — на него и краска ложится хуже, и другие покрытия, наносимые не химическим способом.

Правда, некоторую надежду на успех вселяло то, что основа будущей шкалы — не гладкая, а рельефная. Это хорошо видно на скане с увеличенным фрагментом:

Не будучи уверенным в благополучном исходе, я решил приобрести прозрачную плёнку для лазерной печати, чтобы в случае чего просто напечатать шкалу на ней и приложить сверху. Пачка с этой плёнкой так долго лежала невостребованной в магазине, что успела пожелтеть и обтрепаться. Продавец очень удивился, что её кто-то наконец-то купил.

Слева на фотографии показана шкала, напечатанная на обычной бумаге — её я использовал, чтобы в последний раз проверить правильность показаний стрелки. А справа — плёнка, причём лицом вниз (печать выполнена в зеркальном отражении, чтобы тонер оказался под защитой).

Я попробовал просто приложить шкалу к подложке — это смотрелось хорошо, но лишь пока плёнка оставалась идеально ровной. Но когда я перестал прижимать её, она отошла от основания, и вид сразу испортился. Так что я взялся за утюг, сначала планируя просто нагреть пластинку и плёнку, чтобы последняя распрямилась и, возможно, немного приплавилась к основе.

Это действительно получилось, и я хотел было так всё и оставить, но любопытство всё-таки взяло верх. Я попробовал «прилутить» второй экземпляр шкалы к другому листу алюминия, и, к моему удивлению, рисунок перенёсся с минимальными потерями, хотя поверхность была совершенно неподготовленной! Так что я вернулся к своей шкале, как следует прогладил её сверху, дал ей остыть, аккуратно оторвал плёнку... и вуаля, 99% тонера благополучно перенеслось на подложку!

В центре шкалы можно заметить немного расплывшийся участок — там был пропуск, и я довольно криво подрисовал недостающие фрагменты гелевой ручкой. Поначалу мне казалось, что это будет незаметно, но дефект мозолил глаза, так что на следующий день я смыл шкалу растворителем 646 и проделал все операции заново, только уже без лишних шагов и старых ошибок. В итоге получилось почти идеально:

Думаю, постепенно я набью руку, и тогда откроются практически безграничные возможности по изготовлению всевозможных шкал и прочих рисунков и надписей, выглядящих как заводские. Можно даже будет делать их цветными, если печатать на соответствующем принтере.

P.S. Перечитав текст, я понял, что у меня получилось скорее не руководство от мастера, а сцена из фильма «Изгой», где герой Тома Хэнкса восторгается первым разведённым костром:-). Но я надеюсь, что эта запись всё равно окажется кому-то полезной.

ХР1 R1 Ш R2* 51X

Как «растянуть» шка у вольтметра. Контролируя какое-то напряжение. иногда бывает нужно либо следить за его колебаниями, либо более точно измерить. Скажем, при эксплуатации автомобильной аккумуляторной батареи важно следить *а изменением ее напряжения в диапазоне 12.. Л 5 В. Именно этот диапазон желательно было бы разместить на всей шкале стрелочного индикатора вольтметра. Но. как вы знаете, отсчет на любом из диапазонов практиче- ски всех измерительных приборов идет от нулевого значения и добиться более высокой точности отсчета на интересующем участке невозможно.

И тем не менее существует способ «растяжки» практически любого участка шкалы (начало, середина, конец) вольтметра постоянного тока. Для этого нужно воспользоваться СВОЙСТВОМ стабилитрона открываться при определенном напряжении, равном напряжению стабилизации. К примеру, для растяжки конца шкалы диапазона 0...15 В достаточно использовать стабилитрон в такой же роли, что и в предыдущем эксперименте.

Взгляните на рис. 4. Стабилитрон VD1 включен последовательно с однопредельным вольтметром, составленным из стрелочного индикатора РА1 и до- бивочиого резистора R2. Как и в предыдущем эксперименте, стабилитрон «съедает» часть измеряемого напряжения, равного напряжению стабилизации В результате на вольтметр будет поступать напряжение, превышающее напряжение стабилизации.

ИРАДИСГ-НАЧИНАЮЩИМ«_

Это напряжение и станет своеобразным нулем отсчета, а зна чит, на шкале «растянется» лишь разници между наибольшим измеряемым напряжением и напряжением стабилизации стабилитрона.

Показанное на рисунке устройство рассчитано на контроль напряжении аккумуляторной батареи в диапазоне от 10 до 15 В. но этот диапазон можно изменить по желанию соответствующим подбором стабилитрона и резистора R2.

Каково назначение резистора R1? В принципе, он не обязате лен. Но без него, пока стабилитрон закрыт, стрелка имди катора остается на пулевой отметке. Введение же резистора позволяет наблюдать напряжение до 10 В на начальном участке шкалы, но этот участок будет сильно «сжат».

Собрав показанные на схеме детали и соединии их со стрелочным индикатором РА1 (микро амперметр М2003 с гоком полною отклонения стрелки 100 мкА и внутренним сопротивлением 450 Ом), подключают щупы ХР1 и ХР2 к блоку питания с регулируемым выходным напряжением. Плавно увеличивая напряжение до 9...9,5 В, заметите небольшое отклонение стрелки индикатора - всего на несколько делений в начале шкалы. Как только при дальнейшем увеличении напряжения оно превысит напряжение стабилизации, угол отклонения стрелки будет резко возрастать Примерно с напряжения 10,5 до 15 В стрелка пройдет почти всю шкалу.

Чтобы убедиться в роли резистора R1, отключите его н повторите эксперимент. До определенною входною напряжения стрелка индикатора останется на нулевой отметке.

Возможно, вас заинтересует подобный способ «растягивания» шкалы и вы захотите практически воплотить его для контроля других напряжений. Тогда придется воспользоваться простейшими расчетами. Исходными данными для них будут диапазон измерения напряжений (l)m>x), ток полного отклонения стрелки индикатора (11Пах), ток начальной точки отсчета (1шт) и соответствующее ему напряжение начала отсчета (UIIljn).

Для примера «расчитаем* наше устройство, показанное на схеме. Допустим, чго вся ткала прибора CImex= 100 мкА) предназначается для контроля напряжений от 10 до 15 В, но начало отсчета пойдет от деления, соответствующею току ЮмкА (1Ш)П=10 мкА), а значит, напряжению 10,5 В (Urnin= = 10,5 В).

Сначала определяем коэффициенты р и к, которые понадобятся для последующих операций:

P=lmi„/ln,«= 10/100=0,1; k=Um,„/Un,„>=)0.S/15=0,7.

Подсчитывает нужное напряжение стабилизации будущего стабилитрона:

UrT=Uninx(k-p)/(l-p) =

15*0,6/0,9=10 В.

Таким напряжением обладают стабилитроны Д810 и Д814В (см. справочную таблицу в статье «Стабилитрон»).

Определяем сопротивление резистора R2 в килоомах, выражая ток в миллиамперах. R2=U,nax(l-K)/lmils(l-p) =

15.0,3/0,1-0,9=50 кОм.

Вообще, из полученного значения следовало бы вычесть внутреннее сопротивление стрелочною индикатора (450 Ом), но делать это не обязательно сопротивление резистора R2 ведь подбирается практически при налаживании вольтметра.

В заключение определяют сопротивление резистора R1: Rl = Uer/p.lmax=10/0,1 = = 1000 кОм=1 МОм.

В. МАСЛАЕВ

г. Зеленоград

Автолюбителю

Стрелочный вольтметр с растянутой шкалой 10...15 В

Прибор будет полезен автолюбителям для измерения с высокой точностью напряжения на аккумуляторе, но он может найти и другие применения,

Рис. 4.6 Вольтметр с растянутой шкалой

Где требуется контролировать напряжение в интервале 10...15 В с точностью 0,01 В.

Известно, что о степени заряженности автомобильного аккумулятора можно судить по его напряжению. Так, у полностью разряженного, разряженного наполовину и полностью заряженного аккумулятора оно соответствует 11,7, 12,18 и 12,66В.

Для того чтобы измерить напряжение с такой точностью, нужен либо цифровой вольтметр, или стрелочный с растянутой шкалой, позволяющий контролировать интересующий нас интервал.

Схема, приведенная на рис. 4.6, позволяет, используя любой микроамперметр со шкалой 50 мкА или 100 мкА, сделать из него вольтметр со шкалой измерения 10...15 В.

Схема вольтметра не боится неправильного подключения полярности к измеряемой цепи (в этом случае показания прибора не будут соответствовать измеряемой величине).

Для предохранения микроамперметра РА1 от повреждения при перевозках используется включатель S1, который при закорачивании выводов измерительного прибора препятствует колебаниям стрелки.

В схеме использован прибор РА1 с зеркальной шкалой, типа М1690А (50 мкА), но подойдут и, многие другие. Прецизионный стабилитрон VD1 (Д818Д) может быть с любой последней буквой в обозначении. Подстроечные резисторы лучше использовать многооборотные, например R2 типа СПЗ-36, R5 типа СП5-2В.

Для настройки схемы потребуется блок питания с регулируемым выходным напряжением О...15 В и образцовый вольтметр (удобней, если он будет цифровым). Настройка заключается в том, чтобы, подключив блок питания к зажимам Х1, Х2 и постепенно увеличивая напряжение до 10 В, добиться резистором R5 "нулевого" положения стрелки прибора РА1. После этого напряжение источника питания увеличиваем до 15 В и резистором R2 устанавливаем стрелку на предельное значение шкалы измерительного прибора. На этом настройку можно считать законченной.

Рис. 4.7. Схема для более точного измерения сетевого напряжения

На основе данной схемы прибор можно выполнить многофункциональным. Так, если выводы микроамперметра подключать к схеме через галетный переключатель 6П2Н, можно сделать режим обычного вольтметра, подобрав добавочный резистор, а также тестер для проверки це пей и предохранителей.

Прибор можно дополнить схемой (рис. 4.7) для измерения перемен- ного сетевого напряжения. При этом шкала у него будет от 200 до 300 В, что позволяет более точно измерять сетевое напряжение.


Дата публикации: 20.02.2007

Мнения читателей
  • Heloiza / 31.10.2012 - 07:37
    Suprsriing to think of something like that
  • Александр / 04.02.2010 - 15:45
    Старенькая очень хорошая схемка, на базе этой схемы было дополнение для измерения частоты вращения (оборотов). Кто знает, подскажите.Заранее благодарен [email protected]

При конструировании, ремонте и отладке различной радиоаппаратуры нередко даже опытные радиолюбители совершают элементарные ошибки, которые заканчиваются плачевным финалом для эксплуатируемых ими измерительных приборов. Одна из таких ошибок – извечное радиолюбительское желание измерить сетевое напряжение 220 В, не переключив авометр на соответствующий род работ.

Это несложное устройство, принципиальная электрическая схема которого показана на рис.1, предназначено для контроля сетевого напряжения переменного тока 220 В. Устройство может занять достойное место в радиолюбительской мини$лаборатории или найти применение при доработке различной промышленной бытовой аппаратуры.

Рис.1. Схема вольтметра сетевого напряжения с растянутой шкалой

В качестве прототипа использовалось авторское устройство, описание которого можно найти на страницах журнала “Электрик” . Предлагаемое устройство, в дополнение к функции индикации стрелочным микроамперметром сетевого напряжения, имеет возможность прерывистым звуковым сигналом информировать оператора о значительном превышении сетевого напряжения. Этот несложный узел также можно использовать и для доработки устройств автоматического отключения потребителей электроэнергии от сети, повысив их функциональность.

Устройство питается от сети переменного тока 220 В. Избыток энергии сетевого напряжения гасится высоковольтным пленочным конденсатором C1, далее пониженное напряжение через токоограничительный резистор R4 поступает на однополупериодный выпрямитель напряжения, выполненный на диоде VD2 и светодиодах HL1–HL3. Выпрямленное напряжение ограничивается термокомпенсированным стабилитроном VD3, а пульсации выпрямленного напряжения фильтруются оксидным конденсатором C4.

Устройство работает следующим образом. Сетевое напряжение через выпрямительный диод VD1 и ограничительный резистор R1 поступает на конденсатор фильтра выпрямленного напряжения C2. Напряжение, до которого заряжается этот конденсатор, почти прямо пропорционально зависит от напряжения сети. Шкалу малогабаритного микроамперметра для отображения величины сетевого напряжения желательно сделать растянутой, например, разместив на ней наиболее важный участок со значениями 180…250 В.

Транзистор VT1 работает как микромощный микротоковый стабилитрон с напряжением стабилизации около 40…50 В. Пока напряжение на его переходе меньше напряжения обратимого лавинного пробоя, этот транзистор закрыт, напряжение на выводе затвора VT2 относительно общего провода почти равно нулю, VT2 закрыт, показания микроамперметра PA1 минимальны. Также будет закрыт и транзистор VT3.

Когда напряжение на эмиттерном переходе VT1 станет больше порогового, этот транзистор откроется, откроется и истоковый повторитель на VT2, стрелка микроамперметра отклонится. Чем больше сетевое напряжение, тем на больший угол отклоняется стрелка от начального положения. В случае, если напряжение сети значительно превышает допустимую норму, например 260 В, напряжение на выходе истокового повторителя на VT2 достаточно для открывания p7канального полевого транзистора VT3. В результате мигающий светодиод HL4 вспыхивает, в такт его вспышкам пищит звуковой пьезокерамический излучатель со встроенным генератором HА1. Порог включения звуковой сигнализации устанавливают регулировкой подстроечного резистора R9. Светодиоды зеленого цвета свечения HL1–HL3 кроме выполняемой ими функции выпрямления сетевого напряжения подсвечивают шкалу прибора.

Детали. Резистор R4 желательно применить невозгораемый Р177 или аналогичный импортный разрывной. Остальные постоянные резисторы любые малогабаритные, например, С174, МЛТ, С2723, С2733. Подстроечные резисторы СП471, РП1763, СП3738 или аналогичные малогабаритные импортные. После окончательной настройки устройства подстроечные резисторы желательно заменить постоянными, что повысит долговременную точность настройки измерителя. Конденсатор C1 на рабочее напряжение не менее 630 В. Подойдут отечественные полиэтилентерефталатные К73717, К73724, К73739. Также в качестве C1 можно применить и пару последовательно включенных импортных конденсаторов типа GPF 250V~X2 емкостью 0,47 мкФ. Конденсатор C3 – любой малогабаритный керамический, а C4 – импортный аналог К5035.

Диоды 1N4004 можно заменить любыми из серий КД209, КД243Г–Ж, КД247В–Д, КД105Б–Г. Стабилитрон Д818Г можно заменить любым из этой серии или КС482А, КС510А, КС191М, Д814Б. Применение стабилитрона в миниатюрном стеклянном корпусе нежелательно. Светодиоды HL1–HL3 можно заменить практически любыми с допустимым прямым током от 20 мА, видимого цвета свечения, например, КИПД66Д7Л, КИПД24Ж7Л, АЛ307Н7М. Мигающий светодиод HL4 можно заменить любым из серий L56B, L36В, L796B и другими.

Биполярные транзисторы серии КТ501 не совсем обычные, они допускают относительно высокое напряжение база–эмиттер. Без значительной корректировки сопротивления резистора R2 можно использовать транзисторы КТ501Ж–КТ501М. При отсутствии такого или аналогичного транзистора микротоковый стабилитрон на 30…50 В можно изготовить из нескольких транзисторов типов КТ315, КТ312. Полевые транзисторы КП501Б заменимы любыми из этой серии или КП504, КП505, К1014КТ1, ZVN2120.

Автор использовал микроамперметр типа М4761 с сопротивлением рамки около 900 Ом, взятый из старого неисправного бытового катушечного магнитофона “Сатурн”. Подойдут и другие аналогичные микроамперметры от индикаторов уровня записи/воспроизведения. Применение в качестве VT2 полевого транзистора делает практически независимыми ранее выставленные настройки (кроме регулировки R7) от типа применяемого стрелочного индикатора. Пьезокерамический излучатель звука можно заменить потребляющими небольшой ток EFM7473, EFM7475, EFM7250.

Рис.2. Эскиз печатной платы

Настройка устройства сводится к установке требуемых чувствительности прибора и “растянутости” его шкалы, что достигается подбором и регулировкой сопротивлений резисторов R2, R3, R5, R7. Резистором R10 можно установить желаемую громкость сигнала звукового излучателя HA1. Эскиз печатной платы показан на рис.2.

Литература

1. Бутов А.Л. Вольтметр сетевого напряжения с растянутой шкалой//Электрик. – 2002. – №7. – С.14.

2. Бутов А.Л. Устройство контроля напряжения сети//Схемотехника. – 2003. – №2. – С.44.

А.Л. Бутов, Ярославская обл.
Радіоаматор 2005 №08

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw