Радио технические цепи и сигналы. Спектр последовательности прямоугольных импульсов Спектр бесконечной последовательности прямоугольных импульсов

Главная / Салон

Для определения спектров для различных видов импульсной модуляции найдем спектр самого носителя. Возьмем импульсный носитель с импульсами прямоугольной формы (рис. 3.10).

Рис. 3.10 Периодическая последовательность прямоугольных импульсов

Последовательность таких импульсов можно представить рядами Фурье.

, (3.32)

где - комплексная амплитуда k-ой гармоники;

- постоянная составляющая.

Найдем комплексные амплитуды для указанных пределов (рис. 3.10).

(3.33)

Постоянная составляющая

(3.34)

Подставим (3.33) и (3.34) в (3.32) и после преобразования получим:

(3.35)

Из выражения видно, что спектр линейчатый с огибающей, повторяющей спектр одиночного импульса (рис. 3.11). Другими словами, для импульсов одинаковой формы решетчатая функция вписывается в непрерывную S(jω).

Рис. 3.11 Спектр периодической последовательности импульсов

Постоянная составляющая А 0 /2 имеет при этом вдвое меньшее значение. Расстояние между составляющими гармоник равно основной частоте носителя ω 0 =2π/Т. Отсюда следует, что изменение периода Т следования импульсов приводит к изменению плотности дискретных составляющих, а изменение скважности Т/τ при неизменном периоде (т.е. изменение τ) вызывает сужение или расширение огибающей с сохранением ее формы, оставляя неизменным расстояние между линиями дискретного спектра. При достаточно большой плотности этих линий, когда между узлами размещается по крайней мере несколько линий спектра (Т>>τ), ширину спектра ω импульсного носителя можно считать практически такой же, как и для одиночного импульса. С приближением τ к Т эти спектры могут оказаться различными по ширине. На Рис. 3.12 изображены деформации спектра импульсного носителя при изменении Т, а на Рис. 3.13 при изменении τ для импульсов прямоугольной формы.

Рис. 3.12 Изменение характера спектра носителя при изменении

периода Т следования импульсов прямоугольной формы.

При неизменной амплитуде импульсов согласно выражению (3.25) огибающая дискретного спектра увеличивается пропорционально увеличению площади импульсов (рис. 3.13).

Следует отметить, что периодической последовательности в чистом виде не бывает поскольку любая последовательность имеет начало и конец. Степень приближения зависит от числа импульсов в последовательности. Поэтому для строгого описания импульсного носителя последний должен рассматриваться как одиночный импульс, представляющий собой пакет элементарных импульсов определенной формы. Такой сигнал имеет непрерывный спектр.

Однако по мере накопления числа импульсов в последовательности ее спектр дробится и деформируется таким образом, что все более приближается к решетчатому.

Рис. 3.13 Изменение характера спектра носителя при изменении

длительности импульса τ для импульсов прямоугольной формы.

3.7 Спектры сигналов с импульсной модуляцией

Спектры всех видов импульсных модуляций имеют сложное строение, а выводы зачастую получаются слишком громоздкими. По этой причине вопрос о спектральном составе сигналов импульсной модуляции рассмотрим, опуская в ряде случаев слишком сложные промежуточные преобразования. Такое рассмотрение позволяет показать подход к задаче, наметить путь решения и проанализировать окончательные выводы.

Найдем спектр при амплитудно–импульсной модуляции (АИМ). Для упрощения модулирующую функцию f(t) выберем, содержащую одну гармонику sint

Раскрывая это выражение и заменяя произведение синуса на косинус

. (3.36)

Из (3.36) видно, что в спектре сигнала содержится частота модулирующей функции и наивысшие гармонические составляющие kω 0 ±  с двумя боковыми спутниками. При этом наивысшие гармонические составляющие вписываются в огибающую спектра одиночного импульса носителя. На Рис. 3.14 показан спектр при амплитудно-импульсной модуляции.

Рис. 3.14 Спектр при амплитудно-импульсной модуляции.

Ширина спектра при АИМ не изменяется, так как величина амплитуд, которые нужно принимать во внимание при определении ширины, зависит только от соотношения τ /Т, а эта величина при АИМ постоянна. Если последовательность импульсов модулируется сложной функцией от  min до  max , то в спектре после модуляции появляются не спектральные линии, а полосы частот  min …  max и кω 1 ±( min … max)

Рассмотрим особенности спектра при фазо-импульсной модуляции (ФИМ), которая относится к разновидности время-импульсной модуляции (ВИМ).

При ФИМ – модуляции (Рис. 3.15) пунктирной линией показано изменение модулирующей функции во времени. Вертикальные пунктирные линии соответствуют положению переходных фронтов немодулированнойпоследовательности импульсов. Из рисунка видно, что положение импульсов (фаза) меняется относительно так называемых тактовых точек t k , соответствующих положению на оси времени передних фронтов немодулированной последовательности импульсов. Смещение одного из импульсов на время ∆t k показано на рисунке.

Рис. 3.15 Иллюстрация ФИМ – модуляции.

Рис. 3.16 Положение импульса без модуляции

и при наличии модуляции.

На рис. 3.16 пунктиром показан немодулированный импульс, расположенный симметрично относительно тактовой точки, соответствующей началу отсчета. При модуляции импульс сместится на величину
, где t 1 соответствует новому положению переднего фронта, а t 2 – новому положению заднего фронта. Будем считать, что максимальное смещение импульса ∆t K соответствует значению U(t) = 1.

Если модулирующая функция изменяется синусоидально, то для модулированного импульса моменты времени, соответствующие положению переднего и заднего фронтов будет:


(3.37)


(3.38)

В последнем выражении (3.38) значение времени равно (t-τ) поскольку задний фронт смещен относительно переднего на величину длительности импульса.

Для получения спектра при ФИМ необходимо подставить вместо τ значение t 2 -t 1 , поскольку t 1 и t 2 являются текущими координатами. Отразить смещение осевой линии можно, заменяя время t временем
. В результате подстановки этих значений в (3.35) получим:


(3.39)

Подставляя в выражение (3.39) значения t 1 и t 2 и после преобразования получим выражение, совпадающее со спектром при АИМ, только около составляющей основной частоты и каждой высшей гармоники появились не одна нижняя и одна верхняя боковые спектральные линии, а полосы боковых гармоник с частотами (kω 0 ±n).

Примерный вид спектра показан на рис. 3.17. Однако боковые спутники быстро убывают, так как в них входят Бесселевы функции.

Рис. 3.17 Спектр при фазо-импульсной модуляции.

Спектры при ШИМ и ЧИМ по своему составу оказываются такими же, как и спектр при ФИМ – модуляции.

Несмотря на то, что характер спектра при модуляции носителя изменяется и зависит от вида модуляции, его ширина остается такой же, как и для одиночного импульса и определяется в основном длительностью импульсов τ.

Передача измерительной информации в телеметрических устройствах с временным разделением каналов часто оказывается более предпочтительной, чем передача при помощи частотного разделения каналов, так как при временном разделении не требуется фильтров и, кроме того, ширина полосы пропускания не зависит от числа каналов.

В зависимости от вида модуляции в каналах (первичной) и вида модуляции несущей частоты (вторичной) существуют основные типы телеизмерительных устройств с временным разделением каналов: АИМ-ЧМ, ШИМ-ЧМ, ФИМ-АМ, ФИМ-ЧМ, КИМ-АМ, КИМ-ЧМ.

Системы с временным разделением каналов применяются для передачи измерительной информации с искусственных спутников и космических кораблей.

Периодическая последовательность прямоугольных видеоимпульсов является модулирующей функцией для формирования периодической последовательности прямоугольных радиоимпульсов (ПППВИ), которые являются зондирующими сигналами для обнаружения и измерения координат движущихся целей. Поэтому, по спектру модулирующей функции (ПППВИ), можно относительно просто и быстро и определить спектр зондирующего сигнала (ПППРИ). При отражении зондирующего сигнала от движущейся цели изменяются частоты спектра гармоник несущего колебания (эффект Доплера). Вследствие чего, можно выделить полезный сигнал, отраженный от движущейся цели, на фоне мешающих (помеховых) колебаний, отраженных от неподвижных объектов (местные предметы) или малоподвижных объектов (метеообразования, стаи птиц и др.).

ПППВИ (рис. 1.42) представляет собой совокупность одиночных прямоугольных видеоимпульсов, следующих друг за другом через равные промежутки времени. Аналитическое выражение сигнала.

где – амплитуда импульсов; – длительность импульсов; – период следования импульсов; – частота следования импульсов, ; – скважность.

Для вычисления спектрального состава периодической последовательности импульсов применяют ряд Фурье. При известных спектрах одиночных импульсов, образующих периодическую последовательность, можно воспользоваться связью между спектральной плотностью импульсов и комплексными амплитудами ряда:

Для одиночного прямоугольного видеоимпульса спектральная плотность описывается формулой

Воспользовавшись связью между спектральной плотностью одиночного импульса и комплексными амплитудами ряда, находим

где = 0; ± 1; ± 2; ...

Амплитудно-частотный спектр (рис. 1.43) будет представлен совокупностью составляющих:

при этом положительным значениям соответствуют нулевые начальные фазы, а отрицательным – начальные фазы, равные .

Таким образом, аналитическое выражение ПППВИ будет равно

Из анализа графиков, приведенных на рисунке 1.43 следует:

· Спектр ПППВИ дискретный состоящий из отдельных гармоник с частотой .

· Огибающая АЧС изменяется по закону .

· Максимальное значение огибающей при равно , значение постоянной составляющей .

· Начальные фазы гармоник в пределах нечетных лепестков равны 0, в пределах четных .

· Количество гармоник в пределах каждого лепестка равно .

· Ширина спектра сигнала на уровне 90% энергии сигнала

· База сигнала , поэтому сигнал является простым.

Если изменять длительность импульсов , либо частоту их повторения F (период ), то параметры спектра и его АЧС будет изменяться.


На рисунке 1.43 представлен пример изменения сигнала и его АЧС при увеличении длительности импульса в два раза.

Периодические последовательности прямоугольных видеоимпульсов и их АЧС параметрами , T ,. и , T , изображены на рисунке 1.44.

Из анализа приведенных графиков следует:

1. Для ПППВИ с длительностью импульса :

· Скважность q =4, следовательно, в пределах каждого лепестка сосредоточено 3 гармоники;

· Частота k-ой гармоники ;

· Ширина спектра сигнала на уровне 90% энергии ;

· Постоянная составляющая равна

2. Для ПППВИ с длительностью импульса :

· Скважность q= 2, следовательно, в пределах каждого лепестка находится 1 гармоника;

· Частота k-ой гармоники осталось неизменной ;

· Ширина спектра сигнала на уровне 90% его энергии уменьшилась в 2 раза ;

· Постоянная составляющая увеличилась в 2 раза .

Таким образом, можно сделать вывод, что при увеличении длительности импульса, происходит “сжатие” АЧС вдоль оси ординат (уменьшается ширина спектра сигнала), при этом увеличиваются амплитуды спектральных составляющих. Частоты гармоник не изменяются.

На рисунке 1.44. представлен пример изменения сигнала и его АЧС при увеличении периода следования в 4 раза (уменьшение частоты повторения в 4 раза).

c) ширина спектра сигнала на уровне 90% его энергии не изменилась;

d) постоянная составляющая уменьшилась в 4 раза.

Таким образом, можно сделать вывод, что при увеличении периода следования (уменьшении частоты повторения происходит “сжатие ”) АЧС вдоль оси частот (уменьшаются амплитуды гармоник с увеличением их количества в пределах каждого лепестка). Ширина спектра сигнала при этом не изменяется. Дальнейшее уменьшение частоты повторения (увеличения периода следования) приведет (при ) к уменьшению амплитуд гармоник до бесконечно малых величин. При этом сигнал превратиться в одиночный, соответственно спектр станет сплошным.

Название образовательной организации:

Государственное бюджетное профессиональное образовательное учреждение «Ставропольский колледж связи имени Героя Советского Союза В.А. Петрова»

Год и место создания работы: 2016 год, цикловая комиссия естественных и общепрофессиональных дисциплин.

Методические указания к выполнению практической работы по дисциплине «Теория электросвязи»

«Расчет и построение спектра периодической последовательности прямоугольных импульсов»

для студентов 2 курса специальностей:

11.02.11 Сети связи и системы коммутации

11.02.09 Многоканальные телекоммуникационные системы

очной формы обучения

Цель работы: закрепить знания, полученные на теоретических занятиях, выработать навыки расчета спектра периодической последовательности прямоугольных импульсов.

Литература: П.А. Ушаков «Цепи и сигналы электросвязи». М.: Издательский центр «Академия», 2010, с.24-27.

1. Оснащение:

1.Персональный компьютер

2.Описание практической работы

2. Теоретический материал

2.1. Периодический сигнал произвольной формы может быть представлен в виде суммы гармонических колебаний с разными частотами, это называется спектральным разложение сигналом.

2.2 . Гармониками называются колебания, частоты которых в целое число раз больше частоты следования импульсов сигнала.

2.3. Мгновенное значение напряжения периодического сигнала производной формы может быть записано следующим образом:

Где постоянная составляющая, равная среднему значению сигнала за период;

Мгновенное значение синусоидального напряжения первой гармоники;

Частота гармоники, равная частоте следования импульсов;

Амплитуда первой гармоники;

Начальная фаза колебания первой гармоники;

Мгновенное значение синусоидального напряжения второй гармоники;

Частота второй гармоники;

Амплитуда второй гармоники;

Начальная фаза колебания второй гармоники;

Мгновенное значение синусоидального напряжения третий гармоники;

Частота третий гармоники;

Амплитуда третий гармоники;

Начальная фаза колебания третий гармоники;

2.4. Спектр сигнала - это совокупность гармонических составляющих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнала. На практике чаще всего используется диаграмма амплитуд

Если сигнал представлен собой периодическую последовательность прямоугольных импульсов, то постоянная составляющая равна

где Um - амплитуда напряжения ПППИ

s - скважность сигнала (S - T/t);

T - период следования импульсов;

t - длительность импульсов;

Амплитуды всех гармоник определяются выражением:

Umk = 2Um | sin kπ/s | / kπ

где k - номер гармоника;

2.5. Номера гармоника, амплитуды которых равны нулю

где n - любое целое число 1,2,3…..

Номер гармоники, амплитуда которой первый раз обращается в нуль, равен скважности ПППИ

2.6. Интервал между любыми соседними спектральными линиями равен частоте первой гармоники или частоте следования импульсов.

2.7 Огибающая амплитудного спектра сигнала (на рис. 1 показанная пунктирной линией)

выделяет группы спектральных линий называемых лепестками. Согласно рис. 1 каждый лепесток огибающей спектра содержит число линий, равное скважности сигнала.

3 . П орядок выполнения работы .

3.1. Получить вариант индивидуального задания, который соответствует номеру в списке журнала группы (см. приложение).

3.2. Ознакомиться с примером расчета (см. раздел 4)

4. Пример

4.1. Пусть период следования ПППИ Т=.1мкс, длительность импульсов t=0,25 мкс, амплитуда импульса =10В.

4.2. Расчет и построение временной диаграммы ПППИ.

4.2.1 . Для построения временной диаграммы ПППИ необходимо знать период следования импульсов Т, амплитуду и длительность импульсов t, которые известны из условия задачи.

4.2.2. Для построения временной диаграммы ПППИ необходимо выбрать масштабы по осям напряжений и времени. Масштабы должны соответствовать числам 1,2 и 4, умноженным на 10 n -(где n=0,1,2,3...). Ось времени должна занимать примерно 3/4 ширины листа и на ней следует разместить 2-3 периода сигнала. Вертикальная ось напряжений должна быть равна 5-10 см. При ширине листа 20 см длинна оси времени должна равна примерно 15 см. На 15-ти см удобно разместить 3 периода, при этом на каждый период будет приходиться L 1 =5см. Так как

Mt=T/Lt=1мкс/5см= 0,2 мкс/см

Полученный результат не противоречит выше указанным условиям. На оси напряжений удобно взять масштаб Мu=2В/см (см.рис.2).

4.3.Расчет и построение спектральной диаграммы.

4.3.1.Скважность ПППИ равна

4.3.2. Так как скважность S=4, то следует рассчитывать 3лепестка, т.к. 12 гармоник.

4.3.3.Частоты гармонических составляющих равны

Где к- номер гармоники, l- период ПППИ.

4.3.4. Амплитуды составляющих ПППИ равны

4.3.5. Математическая модель ПППИ напряжения

4.3.6.Выбор масштабов.

Ось частот располагается горизонтально и при ширине листа 20см должна иметь длину около 15 см. Так как на оси частот нужно показать самую высокую частоту 12 МГц удобно взять масштаб по этой оси Mf=1MГц/см.

Ось напряжений располагается вертикально и должна иметь длину 4-5 см. Так как из оси напряжений нужно показать самое большое напряжение

Удобно взять масштаб по этой оси M=1В/см.

4.3.7.Спектральная диаграмма показана на рис.3

Задание:

    T=0.75мс; τ=0.15мс 21.T=24мкс; τ=8мкс

    T=1.5 мкс; τ=0.25мкс 22. T=6.4мс; τ=1.6мс

    T=2.45мс; τ=0.35мс 23. T=7мс; τ=1.4мс

    T=13.5мкс; τ=4.5мкс 24. T=5.4мс; τ=0.9мс

    T=0.26мс; τ=0.65мкс 25. T=17.5мкс; τ=2.5мкс

    Т=0.9мс; τ=150мкс 26. T=1.4мкс; τ=0.35мкс

    Т=0.165мс; τ=55мкс 27. T=5.4мкс; τ=1.8мкс

    Т=0.3мс; τ=75мкс 28. T=2.1мс; τ=0.3мс

    Т=42.5мкс; τ=8.5мкс 29. T=3.5мс; τ=7мс

    Т=0.665мс; τ=95мкс 30. T=27мкс; τ=4.5мкс

    Т=12.5мкс; τ=2.5мкс 31. T=4.2мкс; τ=0.7мкс

    Т=38мкс; τ=9.5мкс 32.T=28мкс; τ=7мкс

    Т=0.9мкс; τ=0.3мкс 33. T=0.3мс; τ=60мкс

    Т=38.5мкс; τ=5.5мкс

    Т=0.21мc; τ=35мс

    Т=2.25мс; τ=0.45мс

    Т=39мкс; τ=6.5мкс

    Т=5.95мс; τ=0.85мс

    Т=48мкс; τ=16мкс

    Спектральный анализ периодических сигналов

    Как известно, любой сигнал S(t), описываемый периодической функцией времени, удовлетворяющей условиям Дирихле (модели реальных сигналов им удовлетворяют), можно представить в виде суммы гармонических колебаний, называемой рядом Фурье:

    где - среднее значение сигнала за период или постоянная составляющая сигнала;

    Коэффициенты ряда Фурье;

    Основная частота (частота первой гармоники); n=1,2,3,…

    Совокупность значений An и n (или при разложении по синусоидальным функциям n) называется спектром периодической функции. Амплитуды гармоник An характеризуют амплитудный спектр, а начальные фазы n (или "n) - фазовый спектр.

    Таким образом, спектр периодического сигнала представляется в виде постоянной составляющей и бесконечного числа гармонических колебаний (синусоидальных или косинусоидальных) с соответствующими амплитудами и начальными фазами. Частоты всех гармоник кратны основной частоте. Это означает, что если периодический сигнал следует с частотой, например, 1 кГц, то в его спектре могут быть только частоты 0кГц, 1 кГц, 2 кГц и т.д. В спектре такого периодического сигнала не могут присутствовать, например, частоты 1,5 кГц или 1,2 кГц.

    На рис. 1. приведены амплитудный и фазовый спектры некоторого периодического сигнала. Каждая гармоническая составляющая изображена вертикальными отрезки, длины которых (в некотором масштабе) равны ее амплитуде и фазе. Как видно, спектр периодического сигнала является дискретным или, как говорят, линейчатым.

    С целью упрощения расчетов часто используют вместо тригонометрической формы записи ряда Фурье комплексную форму его записи, коэффициенты которой объединяют коэффициенты An и n:


    Совокупность комплексных амплитуд n называют комплексным спектром периодического сигнала.

    Расчет спектров сигналов в комплексной области значительно проще, поскольку нет необходимости рассматривать отдельно коэффициенты и тригонометрической формы записи ряд Фурье.

    Спектр периодической последовательности прямоугольных импульсов

    Прежде чем рассмотреть спектр периодической последовательности прямоугольных импульсов, рассмотрим параметры этих импульсов.

    Параметрами одиночного импульса являются амплитуда, длительность импульса, длительность фронта, длительность спада, спад (скол) плоской вершины.

    Амплитуда импульса Um измеряется в вольтах.

    Длительность импульса измеряется по основанию, на уровнях 0,1Um или 0,5Um. В последнем случае длительность импульса называется активной. Измеряется длительность импульса в единицах времени.

    Длительность фронта tф и спада tс измеряется либо на уровне 0 - Um, либо на уровне (0,1-0,9)Um. В последнем случае длительность фронта и спада называют активными.

    Скол плоской вершины характеризуется коэффициентом скола? = ?u/Um,

    где?u - значение скола; Um - амплитуда импульса.

    Параметрами серии импульсов являются период повторения T, частота следования f, скважность Q, коэффициент заполнения, средние значения напряжения Uср и среднее значение мощности Pср.

    Период повторения T = tи +tп, где T - период, tи - длительность импульса, tп - длительность паузы. Измеряются T, tи, и tп в единицах времени.

    Частота следования f = 1/T измеряется в герцах и т.д.

    Скважность Q = T/tи - величина безразмерная.

    Коэффициент заполнения = tи/T - величина безразмерная.

    Среднее значение напряжения

    Перейдем к рассмотрению амплитудного и фазового спектров сигнала в виде периодической последовательности прямоугольных импульсов длительностью и амплитудой Um, следующих с периодом T (рис. 2).


    Рассмотрим случай, когда середина импульса является началом отсчета времени. Тогда на периоде сигнал описывается выражением

    Комплексные амплитуды гармонических составляющих.

    Функция является знакопеременной и меняет свой знак на обратный при изменении аргумента n1 на величину?щ = 2р/ф, что соответствует приращению фазы на.

    где k - порядковый номер интервала на шкале частот, отсчитываемый с нулевой частоты.

    Таким образом, амплитуды гармоник, включая постоянную составляющую, определяются выражением:

    а фазы - выражением =1, 2,3,…

    Функция характеризует изменение амплитудного спектра сигнала в зависимости от частоты. Она обращается в нуль, при значениях её аргумента, кратных. Отсюда следует, что гармоники с номером n = , где = 1,2,3,…будут иметь нулевые амплитуды, т.е. отсутствовать в спектре.

    Как известно, отношение называется скважностью последовательности импульсов. Таким образом, в спектре рассматриваемой последовательности будут отсутствовать гармоники, номера которой кратны скважности.

    Если начало отсчета времени связать с началом импульса, то амплитудный спектр останется без изменений, а фазы гармоник в соответствии со свойством преобразования Фурье получат дополнительный фазовый сдвиг nщ1ф/2. В результате

    Выражения для тригонометрической формы записи ряда Фурье при отсчете времени от середины и начала импульса соответственно имеют вид:


    На рис. 3. приведены амплитудные и фазовые спектры рассматриваемой последовательности прямоугольных импульсов при скважности, равной двум.

    Фазовые спектры показаны соответственно при отсчете времени от середины и начала импульса. Пунктирные линии на амплитудных спектрах характеризуют поведение модуля спектральной плотности одиночного импульса.

    Выражение для значений амплитуд и фаз гармоник легко получить в виде, удобном для расчетов. Так при отсчете времени от середины импульса для скважности, равной двум, имеем

    В данном выражении

    функция sinc, как показано на рис. 2.6, достигает максимума (единицы) при у = 0и стремится к нулю при у ® ±¥, осциллируя с постепенно уменьшающейся амплитудой. Через нуль она проходит в точках у = ±1, ±2, …. На рис. 2.7, а как функция отношения п/Т 0 показан амплитудный спектр последовательности импульсов |с n |, а на рис. 2.7, б изображен фазовый спектр q n . Следует отметить, что положительные и отрицательные частоты двустороннего спектра - это полезный способ математического выражения спектра; очевидно, что в реальных условиях воспроизвести можно только положительные частоты.

    Отношение

    Идеальная периодическая последовательность импульсов включает все гармоники, кратные собственной частоте. В системах связи часто предполагается, что значительная часть мощности или энергии узкополосного сигнала приходится на частоты от нуля до первого нуля амплитудного спектра (рис. 2.7, а ). Таким образом, в качестве меры ширины полосы последовательности импульсов часто используется величина 1/T (где Т - длительность импульса). Отметим, что ширина полосы обратно пропорциональна длительности импульса; чем короче импульсы, тем более широкая полоса с ними связана. Отметим также, что расстояние между спектральными линиями Df = 1/Т 0 обратно пропорционально периоду импульсов; при увеличении периода линии располагаются ближе друг к другу.


    Таблица 2.1. Фурье-образы

    x (t ) X (f )
    d(t )
    d(f )
    cos 2 pf 0 t /2
    sin 2 pf 0 t /2
    d(t - t 0)
    d(f - f 0)
    , a >0
    exp(-at )u (t ), a >0
    rect(t / T ) T sinc fT
    W sinc Wt rect (f / W )

    sinc x =


    Таблица 2.2 Свойства преобразования Фурье f )

    Свертка по частоте x 1 (t )x 2 (t ) X 1 (f )*X 2 (f )

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw