Какие детали кшм относятся к подвижной группе. Кривошипно-шатунный механизм двигателя кшм

Главная / Priora

Приветствую читателей нашего уютного блога! Сейчас поговорим о сердце наших железных коней, двигателях внутреннего сгорания. А если точнее, в этот раз рассмотрим назначение кривошипно шатунного механизма – одного из ключевых механизмов мотора.

Трудно переоценить назначение кривошипно шатунного механизма. По сути, именно его мы обязаны благодарить за то, что наши железные кони не стоят на месте, а могут перевозить наши бренные тела и дарить нам радость вождения.

Если говорить сухим техническим языком, то назначение кривошипно шатунного механизма (КШМ) предназначено для преобразования энергии сгоревшей топливно-воздушной смеси в механическое вращение.

Естественно, КШМ не монолитная конструкция и состоит из ряда более простых деталей, о которых пойдёт речь ниже.

Условно элементы кривошипно-шатунного механизма можно разделить на две большие подгруппы: подвижные и неподвижные части.

К первой относятся поршни с кольцами и пальцами, шатуны, коленчатый вал (в простонародье коленвал), а также маховик.

Блок цилиндров

Неподвижные элементы КШМ представлены блоком цилиндров и головкой блока цилиндров, картером, а также прокладкой, расположенной между блоком и головкой.

А теперь чуточку подробнее о роли каждого из актёров театра кривошипно-шатунного механизма. Одним из первых удар сгорающей топливно-воздушной смеси принимает на себя .

Этот героический элемент представляет собой металлическую цилиндрическую деталь, грубо говоря, имеющую форму стакана.

На самом деле его форма довольно непростая – с канавками, выпуклостями, отверстиями и вырезами.

Все эти сложности форм нужны не только для эффективной работы мотора, но и для того, чтобы было где разместить поршневые кольца, а также куда вставить поршневой палец, к которому крепится следующая важная деталь механизма – .

Смысл существования шатуна прост, как пять копеек — передача поступательного движения поршня коленчатому валу.

Довольно скучная, но важная роль. Сам по себе шатун выглядит как металлический стержень двутаврового сечения.

С одного его конца находится отверстие для крепления к поршню при помощи поршневого пальца, а с другого – полукольцо, которое надевается на шатунную шейку вала и фиксируется болтовыми соединениями специальной крышкой.

Стоит отметить, что соединение шатуна с коленвалом подвижное – он же должен вращаться.

Коленчатый вал

Важность следующего элемента КШМ сложно переоценить – это .

Конечно, назвать эту деталь валом в привычном понимании довольно трудно – форма у него сложная и всё из-за того, что к нему крепятся все шатунно-поршневые связки двигателя.

Коленвал — ключевой вращающий элемент мотора и ему приходится выдерживать невероятные нагрузки, поэтому и требования к качеству его исполнения и прочности материалов высочайшие.

Основными деталями коленчатого вала являются шатунные шейки (места, куда крепятся шатуны), щёки, коренные шейки и противовесы. Кстати, своё название кривошипно-шатунный механизм получил именно благодаря части коленвала, а если быть точным, кривошипу – так иногда называют связку шатунной шейки и щёк по обе стороны от неё.

Венчает коленчатый вал с одной из сторон .

Нужно отметить, что, несмотря на свою относительную внешнюю простоту, маховик играет сразу несколько ролей.

Во-первых, в его главную задачу входит поддержание равномерного вращения коленвала во время работы мотора.

Во-вторых, именно это скромное металлическое колесо выступает связующим звеном между стартером и всё тем же коленчатым валом, когда Вы поворачиваете ключ зажигания для запуска двигателя.

Практически все подвижные части кривошипно-шатунного механизма располагаются в блоке цилиндров, а закрывает всё это крутящееся и вращающееся безобразие от наших с Вами глаз головка блока цилиндров.

В неё, как правило, встроены клапаны, свечи и каналы для подвода охлаждающей жидкости, масла, а также воздушно-топливной смеси.

Нужно отметить, что именно вместе с головкой обуславливают такой немаловажный параметр двигателя, как его масса.

В классическом исполнении эти элементы изготавливаются из чугуна, но, благодаря современным технологиям, автопроизводители всё чаще применяют алюминий в их конструкции, что благотворно влияет на вес мотора и, как следствие, всего автомобиля.

Применение лёгких сплавов стало возможным даже в столь критичном элементе блока, как гильзы цилиндров (в них перемещаются вверх и вниз поршни), которые должны обладать стойкостью к износу и выдерживать высокие температуры.

А сколько цилиндров у твоего коня?

В заключение, дорогие наши читатели, хотелось бы сказать несколько слов о видах компоновки двигателей внутреннего сгорания и схемах расположения цилиндров.

Автомобильные концерны комплектуют свои творения моторами нескольких видов, а именно:

  • рядными;
  • V-образными;
  • оппозитными;
  • W-образными.

С точки зрения баланса, самыми оптимальными являются рядные и оппозитные двигатели.

Первые довольно распространены в автомире – рядные четырёхцилиндровые агрегаты встречаются сплошь и рядом, а вот судьба оппозитных не столь публична – они стали синонимом некой эксклюзивности и «клубности».

Так, к примеру, их можно встретить в недрах спортивных Porsche или Subaru.

Оптимальным же сочетанием характеристик обладают V-образные и их родственные W-образные двигатели. На их базе строят как доступные для среднестатистического автолюбителя машины, так и сумасшедшие суперкары, стоимость которых столь же невероятна, как и характер.

Работа W-образного двигателя:

//www.youtube.com/watch?v=xKBpiNorQYQ

Уважаемые посетители блога, в этой небольшой статье мы попытались прояснить назначение кривошипно шатунного механизма, рассмотреть его в общих чертах его компоненты. Буду признателен за подписку.

Читайте статьи на блоге и повышайте свой профессиональный уровень.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Блок-картер

Блок-картер - основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой - для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик - «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть - юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Рис. Конструкции поршней с различной формой днища (а-з) и их элементов:
1 - бобышка; 2 - стенка поршня; 3 - ребро; 4 - днище поршня; 5 - канавки для компрессионных колец; 6 - дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б-з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е-з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы:
1 - верхняя головка шатуна; 2 - стержень; 3 - нижняя головка шатуна; 4 - крышка нижней головки; 5 - вкладыши; 6 - втулка; 7 - шатун дизеля; S - основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 - носок; 2 - шатунная шейка; 3 - коренная шейка; 4 - щека; 5 - противовес; 6 - хвостовик с фланцем

Двигатель - пожалуй, самый ответственный агрегат в автомобиле. Именно он вырабатывает крутящий момент для дальнейшего движения машины. В основе конструкции ДВС лежит кривошипно-шатунный механизм. Назначение и устройство его будет рассмотрено в нашей сегодняшней статье.

Конструкция

Итак, что это за элемент в двигателе?

Данный механизм воспринимает энергию давления газов и преобразует его в механическую работу. КШМ двигателя внутреннего сгорания объединяет в себе несколько составляющих, а именно:

  • поршень;
  • шатун;
  • коленчатый вал со вкладышами;
  • кольца и втулки.

В совокупности они образуют цилиндро-поршневую группу. Каждая деталь кривошипно-шатунного механизма делает свою работу. При этом элементы взаимосвязаны между собой. Каждая деталь имеет свое устройство и назначение. Кривошипно-шатунный механизм должен выдерживать повышенные ударные и температурные нагрузки. Это обуславливает надежность силового агрегата в целом. Далее мы подробно расскажем о каждой из перечисленных выше составляющей.

Поршень

Данная деталь кривошипно-шатунного механизма воспринимает давление расширяющихся газов после воспламенения горючей смеси в камере. Поршень изготавливается из сплавов алюминия и осуществляет возвратно-поступательные движения в гильзе блока. Конструкция поршня объединяет в себя головку и юбку. Первая может иметь разную форму: вогнутую, плоскую или выпуклую.

На 16-клапанных двигателях ВАЗ зачастую используются поршни с выемками. Они служат для предотвращения столкновения головки поршня с клапанами в случае обрыва ремня ГРМ.

Кольца

Также в конструкции есть кольца:

  • маслосъемное;
  • компрессионные (две штуки).

Последние препятствуют утечкам газов в картер двигателя. А первые служат для удаления излишков масла, что остается на стенках цилиндра при осуществлении хода поршня. Чтобы поршень соединился с шатуном (о нем мы расскажем ниже), в его конструкции также предусмотрены бобышки.

Шатун

Работа кривошипно-шатунного механизма не обходится без этого элемента. Шатун передает толкательные усилия от поршня на коленвал. Данные и механизмов имеют Обычно шатуны изготавливаются путем ковки или штамповки. Но на спортивных двигателях используются титановые литые элементы. Они более устойчивы к нагрузкам и не деформируются в случае большого толчка.

Каково устройство и назначение кривошипно-шатунного механизма? Конструктивно шатун состоит из трех частей:

  • верхней головки;
  • стрежня;
  • нижней головки.

Вверху данный элемент соединяется с поршнем при помощи пальца. Вращение детали осуществляется в тех самых бобышках. Такой тип пальца называется плавающим. Стержень у шатуна имеет двутавровое сечение. Нижняя часть является разборной. Это нужно для того, чтобы производить его демонтаж с коленчатого вала в случае неисправностей. Нижняя головка соединяется с шейкой коленчатого вала. Устройство последнего мы рассмотрим прямо сейчас.

Коленчатый вал

Данный элемент является основной составляющей в устройстве кривошипно-шатунного механизма. Назначение его в следующем. воспринимает нагрузки от шатуна. Далее он преобразует их в крутящий момент, который впоследствии передается на коробку через механизм сцепления. На конце вала закреплен маховик. Именно он является заключительной частью в конструкции двигателя. Может быть одно- и двухмассовым. На конце имеет зубчатый венец. Он нужен для зацепления с шестерней стартера в случае запуска двигателя. Что касается самого вала, он изготавливается из высокопрочных сортов стали и чугуна. Элемент состоит из шатунных и коренных шеек, что соединяются «щеками». Последние вращаются во вкладышах (подшипники скольжения) и могут быть разъемными. Внутри щек и шеек есть отверстия для подачи масла. Смазка проникает под давлением от 1 до 5 Бар, в зависимости от нагруженности ДВС.

Во время работы двигателя может возникать дисбаланс вала. Чтобы его предотвратить, в конструкции предусмотрен гаситель крутильных колебаний. Он являет собой два металлических кольца, что соединяются через упругую среду (моторное масло). На внешнем кольце гасителя имеется ременной шкив.

Типы ЦПГ

На данный момент существует несколько разновидностей цилиндропоршневой группы. Наиболее популярная - рядная конструкция. Она применяется на всех 4-цилиндровых двигателях. Также есть рядные «шестерки» и даже «восьмерки». Данная конструкция предполагает размещение оси цилиндров в одной плоскости. отличаются высокой сбалансированностью и малой вибрацией.

Существует также и V-образная конструкция, которая пошла от американцев. Схема кривошипно-шатунного механизма V-8 представлена ниже на фото.

Как видите, здесь цилиндры располагаются в двух плоскостях. Обычно они находятся под углом от 75 до 90 градусов относительно друг друга. Благодаря такой конструкции, можно существенно сэкономить место в подкапотном пространстве. Примером могут послужить 6-цилиндровые моторы от «Опель» С25ХЕ. Этот V-образный двигатель без проблем размещается под капотом поперечно. Если взять рядную «шестерку» от переднеприводного «Вольво», она будет заметно скрадывать место под капотом.

Но за компактность приходится платить меньшей виброустойчивостью. Еще одна схема размещения цилиндров - оппозитная. Практикуется на японских автомобилях «Субару». Оси цилиндров размещены тоже в двух плоскостях. Но в отличие от V-образной конструкции, здесь они находятся под углом 180 градусов. Основные плюсы - низкий центр тяжести и отличная балансировка. Но такие двигатели очень дорогие в производстве.

Ремонт и обслуживание кривошипно-шатунного механизма

Обслуживание любого КШП предполагает лишь регулярную замену масла в двигателе. В случае ремонта уделяется внимание следующим элементам:

  • Кольцам поршней . При залегании они меняются на новые.
  • Вкладышам коленчатого вала . При существенной выработке или проворачивании подшипника скольжения - замена на новый.
  • Поршневым пальцам . Они тоже имеют выработку.
  • Самим поршням . При детонации возможен прогар головки, что влечет за собой снижение компрессии, троение, жор масла и прочие неполадки с двигателем.

Зачастую подобные неисправности возникают при несвоевременной замене масла и фильтра, а также при использовании низкооктанового бензина. Также ремонт КШМ может понадобится при постоянных нагрузках и при высоком пробеге. Детали машин и механизмов обычно имеют высокий запас прочности. Но есть случаи, когда уже на 120 тысячах километров, прогорали клапаны и поршни. Все это является следствием несвоевременного обслуживания силового агрегата.

Итак, мы выяснили, что являет собой кривошипно-шатунный механизм, из каких элементов он состоит.

УСТРОЙСТВО И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

ТРАНСПОРТНЫХ СРЕДСТВ»

Тема № 2. Общее устройство и работа двигателя

Занятие № 2.2. Кривошипно-шатунный механизм (КШМ)

по подготовке специалистов по ВУС-837 «водители транспортных средств категории «С»

Москва 2011


Тема № 2. Общее устройство и работа двигателя (СЛАЙД № 1)

Занятие № 2.2 Кривошипно-шатунный механизм (КШМ)

Учебные вопросы (СЛАЙД № 2)

  1. Назначение, общее устройство, принципы работы КШМ.
  2. Особенности устройства основных деталей КШМ изучаемых двигателей.
  3. Основные причины и признаки неисправностей КШМ.

Время: 2 часа.

Место проведения: аудитория.

Вид занятия: лекция.

Методические указания.

Обосновывать обучаемым важность рассматриваемого учебного вопроса. Основные положения давать под запись в конспект.

Приводить конкретные примеры из опыта эксплуатации автомобилей.

Обратить внимание на правильность ведения конспектов.

Учебный материал излагать с использованием кадров в Microsoft PowerPoint, схем и плакатов.

Поддерживать связь с аудиторией.

Контроль качества усвоения учебного материал производить кратким опросом по изложенному материалу.

Подводить итог рассмотренного вопроса и приступать к изложению следующего учебного вопроса.

Сделать выводы по материалу занятия, подвести итог занятия, ответить на вопросы обучаемых. Дать задание на самостоятельную работу.

Введение

При быстром увеличении автомобильного парка в России, значительно увеличился расход горюче-смазочных материалов. Значительно сократить расход ГСМ позволяет правильная эксплуатация КШМ, а также поддержание его в исправном состоянии. Эти требования будут выполнены только в том случае, если проводится своевременное обслуживание автомобиля в установленном объеме.

Правильное выполнения технического обслуживания возлагается на водителей, которые должны знать правила ухода за КШМ и его устройство.

В настоящей лекции рассматривается общее устройство КШМ, принцип его работы, особенности КШМ двигателей КамАЗ-740, ЯМЗ-238, а также основные причины и признаки неисправностей КШМ.

Учебный вопрос № 1.

Назначение, общее устройство, принципы работы КШМ

Кривошипно-шатунный механизм предназначен для преобразования прямолинейного возвратно-поступательного движения поршней, восприятия силы давления газов, во вращательное движение коленчатого вала (рис. 1), (СЛАЙД № 4) .

Рис. 1. Кривошипно-шатунный механизм (СЛАЙД № 4)

Состав КШМ двигателя.

Всостав кривошипно-шатунного механизма двигателя входят две группы деталей: неподвижные и подвижные .

К неподвижным деталям относятся: блок цилиндров, служащий остовом двигателя, картер маховика, цилиндры, головка блока или головка цилиндров и поддон картера. (СЛАЙД № 5)

Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик. (СЛАЙД № 6)

Блок цилиндров предназначен для крепления и сборки на нем и внутри его основных механизмов и деталей систем двигателя.

Головка блока - это крышка, закрывающая цилиндры

Поддон - предохраняет от загрязнения детали КШМ

Поршни - для восприятия давления газов во время рабочего хода и передачи усилия через палец и шатун коленчатому валу.

Состав: днище, головка, юбка. Днище - плоское - воспринимает давление газов. Имеет усиливающие ребра (для повышения прочности и отбора тепла).

Головка имеет кольцевые канавки для компрессионных и маслосъемного кольца, служащих для уплотнения камеры сгорания и обеспечения герметичности. При сгорании рабочей смеси или дизельного топлива значительное количество тепла поглощается поршнем и отводится от него поршневыми кольцами к зеркалу цилиндра.

Компрессионные кольца - плотно прилегают к поверхности цилиндра, что предотвращает прорыв газов в картер двигателя и попадания масла со стенок цилиндра в камеру сгорания.

Маслосъемное кольцо - снимает излишки масла со стенок цилиндра и отводит его к пальцу. Две сквозные проточки - для отвода масла внутрь поршня.

Маслосъемное кольцо разборное.

Поршневой палец предназначен для крепления шатуна к поршню и передачи усилия от поршня шатуну. Тип - плавающий.

Шатун - для восприятия усилия от поршневого пальца и передачи его на коленчатый вал, а также для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

В нижней головке шатуна установлены вкладыши. Вкладыши имеют отверстия для прохода масла. В нижней головке шатуна просверлено отверстие для подачи масла на стенки цилиндра и на распределительный вал.

Коленчатый вал предназначен для восприятия усилий от отдельных шатунов, преобразования вместе с ними поступательного движения во вращательное, и передачи крутящего момента на трансмиссию автомобиля, а также для привода в действие различных механизмов и деталей двигателя (ГРМ, водяного насоса, масляного насоса, вентилятора, насоса гидроусилителя, генератора, компрессора). КВ - стальной, с каналами для смазки коренных и шатунных шеек и центробежными ловушками для очистки масла.

Шатунные шейки и щеки образуют КРИВОШИП. Противовесы - для разгрузки коренных подшипников от действия инерционных сил, а также для уравновешивания КВ от действия моментов центробежных сил.

Маховик - для накопления энергии в течение рабочего хода, вращения КВ во время вспомогательных тактов, уменьшения неравномерности вращения вала, сглаживания момента перехода деталей КШМ через мертвые точки, облегчения пуска двигателя и трогания автомобиля с места. На обод устанавливается зубчатый венец для пуска двигателя от стартера. Маховик крепится к фланцу коленчатого вала стальными высококачественными болтами. Коленчатый вал в сборе с маховиком и сцеплением подвергают статической и динамической балансировке, чтобы неуравновешенные силы инерции не вызывали вибрации двигателя и сильного износа коренных подшипников.

Принцип работы кривошипно-шатунного механизма. (СЛАЙД № 7).

Поршень наиболее удален от коленчатого вала. Шатун и кривошип (щеки) коленчатого вала как бы вытянулись в одну линию. В цилиндре начинает гореть топливо. Расширяющиеся газы (продукты горения) начинают перемещать поршень в сторону коленчатого вала, шатун вместе с поршнем также перемещается. В это время нижняя головка шатуна, связанная с коленчатым валом, поворачивает коленчатый вал относительно его оси. Повернув коленчатый вал на 180°, нижняя головка шатуна вместе с шатунной шейкой начнет двигаться обратно в исходное положение в сторону поршня. Поэтому поршень также начнет обратное движение. Таким образом, поршень то удаляется, то приближается к коленчатому валу. В этих крайних точках поршень, как бы мгновенно останавливается и его скорость равна нулю. Поэтому такие точки назвали „мертвыми". Положение, занимаемое поршнем, когда он наиболее удален от коленчатого вала - верхняя мертвая точка, - сокращенно называют в. м. т., а положение, когда поршень наиболее приближен к коленчатому валу, - нижняя мертвая точка, - н. м. т.

Рис. 2. Принцип работы кривошипно-шатунного механизма (СЛАЙД № 7)

Выводы по вопросу .

Учебный вопрос № 2

Особенности устройства основных деталей КШМ изучаемых двигателей

Блок - картер . У двигателей КамАЗ-740, ЯМЗ-238 блок - картер представляет собой единую отливку, объединяющую блок цилиндров и верхнюю половину картера. Блок цилиндров предназначен для крепления и сборки на нем и внутри его основных механизмов и деталей систем двигателя (СЛАЙД № 9).

У V-образных двигателей КамАЗ-740 (рис. 3) и ЯМЗ-238 в верхней части блока цилиндров имеются две обработанные поверхности (плоскости), на которые устанавливаются головки. Нижняя часть блока заканчивается обработанным фланцем для присоединения смазочной емкости.

В средней части блока цилиндров имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала. Плоскость разъема блока может проходить по оси коленчатого вала или быть смещенной относительно нее вниз. К нижней части блок-картера крепится стальная штампованная смазочная емкость, служащий резервуаром для масла. По каналам в блоке масло из смазочной емкости подается к трущимся деталям двигателя.

Блоки цилиндров двигателей КамАЗ-740 и ЯМЗ-238 отлиты из легированного серого чугуна заодно с верхней частью картера. Они имеют обработанные посадочные отверстия для гильз цилиндров, а на поверхностях, сопрягаемых с головками, имеются отверстия для подачи охлаждающей жидкости из водяной рубашки в головки блока цилиндров.

Для КамАЗ-740 левый ряд цилиндров смещен относительно правого вперед на 29,5 мм. Для ЯМЗ-238 наоборот правый по отношению к левому на 35 мм, что вызвано установкой на одной шатунной шейке коленчатого вала двух шатунов.

Картерная часть блока связана с крышками коренных подшипников коренными и стяжными болтами. Центрирование крышек коренных подшипников производится горизонтальными штифтами, которые запрессованы на стыке между блоком и крышками, но большей частью входящими в блок для предотвращения их выпадения при снятии крышек.

Кроме того, крышка пятой коренной опоры центрируется в продольном направлении двумя вертикальными штифтами, обеспечивающими точность совпадения расточек под упорные полукольца коленчатого вала на блоке и крышках.

Расточка блока цилиндров под вкладыши коренных подшипников производится в сборе с крышками, поэтому крышки коренных подшипников не взаимозаменяемые и устанавливаются в строго определенном положении. Они изготовлены из высокопрочного чугуна. Крепление крышек осуществляется с помощью вертикальных и горизонтальных стяжных болтов, которые затягиваются с регламентированным моментом. Для двигателя КамАЗ-740 болты крепления с моментом затяжки 275-295 Н∙м (28-30 кгс∙м), а стяжные болты с моментом затяжки 147-167 Н∙м (15-16 кгс∙м). На каждой крышке нанесен порядковый номер опоры, нумерация которых начинается с переднего торца блока. Для двигателя ЯМЗ-238, вертикальные болты затягиваются с моментом 425-455 Н∙м (43-47 кгс∙м), а горизонтальные – 97-117 Н∙м (10-12 кгс∙м). Крышки также не взаимозаменяемые, каждая из них имеет свой номер.

На двигателе КамАЗ-740 спереди к блоку крепится крышка, закрывающая гидромуфту привода вентилятора. Сзади – картер маховика, который служит крышкой механизма привода агрегатов, расположенного на заднем торце блока. На картере маховика справа размещен фиксатор, применяемый для установки угла опережения впрыскивания топлива и регулирования тепловых зазоров в клапанном механизме. Ручка фиксатора при эксплуатации установлена в верхнем положении. В нижнее положение ее устанавливают при регулировочных работах, при этом фиксатор находится в зацеплении с маховиком, а поршень первого цилиндра – в ВМТ на такте сжатия.

На двигателе ЯМЗ-238 к передней части блока цилиндров крепится крышка, закрывающая шестерни распределения, а к задней плоскости блока присоединен картер сцепления. На правой боковой стенке блока цилиндров имеются два обработанных кронштейна для крепления стартера.

Рис. 3. Блок цилиндров V-образного двигателя (СЛАЙД № 9):

1 – блок цилиндров; 2 – крышка коренного подшипника коленчатого вала;

3 – болт крепления крышки; 4 – болт стяжной крепления крышки

Гильзы цилиндров . На двигателях установлены гильзы «мокрого» типа, легкосъемные, изготовлены из специального чугуна, объемно закалены для повышения износостойкости. Зеркало гильзы обработано хонингованием.

Верхняя часть гильзы уплотнена в результате зажима верхнего фланца гильзы между блоком и головкой через прокладку. В соединении «гильза – блок цилиндров» водяная полость уплотнена резиновыми кольцами. В верхней части кольцо установлено под бурт в проточку гильзы, а в нижней - в расточки блока.

Преимущественное применение в двигателях мокрых гильз связано с тем, что они обеспечивают лучший отвод тепла. Это повышает работоспособность и срок службы деталей цилиндропоршневой группы.

Головки цилиндров КамАЗ-740 (рис. 4) отдельные на каждый цилиндр, изготовлены из алюминиевого сплава, для охлаждения имеют полость, сообщающуюся с полостью охлаждения блока.

Каждая головка цилиндра устанавливается на два направляющих штифтах, запрессованных в блок цилиндров, и крепится четырьмя болтами 3 из легированной стали. В головке выполнено отверстие слива моторного масла из-под клапанной крышки в штанговую полость. Окна впускного и выпускного каналов расположены на противоположных сторонах головки цилиндров.

Рис. 4. Головка цилиндра с клапанами в сборе двигателя КамАЗ-740: (СЛАЙД №10):

1 – головка цилиндра; 2 – прокладка крышки головки цилиндра; 3 – болт крепления головки;

4 – крышка головки цилиндра; 5 – болт крепления крышки; 6 – прокладка-заполнитель;

7 – прокладка уплотнительная головки цилиндра

Стык «головка цилиндров – гильза» (газовый стык) – беспрокладочный. Герметичность уплотнения обеспечивается высокой точностью обработки сопрягаемых поверхностей уплотнительного кольца и гильзы цилиндра. Для уменьшения вредных объемов в газовом стыке установлена фторопластовая прокладка-заполнитель. Применение прокладки-заполнителя снижает удельный расход топлива и дымность отработавших газов.

Для уплотнения перепускных каналов охлаждающей жидкости в отверстия днища головки установлены уплотнительные кольца из силиконовой резины.

Пространство между головкой и блоком, отверстия стока моторного масла и штанговые отверстия уплотнены прокладкой головки цилиндра из термостойкой резины. На прокладке дополнительно выполнены уплотнительные бурт втулки подачи масла и канавка слива масла в штанговые отверстия.

Каждая головка цилиндров закрывается крышкой головки цилиндров 4 (рис. 5) и крепится болтом 5.

В отличие от двигателя КамАЗ-740.11 на ЯМЗ-238 головки общие для каждого ряда цилиндров отлиты из серого чугуна. Устанавливаются на шпильки и крепятся гайками через сталеасбестовую прокладку. Сверху каждая головка закрывается крышкой через резиновую маслостойкую прокладку (рис. 5).

Рис. 5. Головка цилиндров двигателя ЯМЗ-238 (СЛАЙД №11):

1 – головка цилиндров; 2 – прокладка крышки головки цилиндра; 3 – гайка крепления головки; 4 – крышка головки цилиндров; 5 – барашки крепления крышки; 6 – шпилька крепления головки; 7 – прокладка головки цилиндра; 8 – седло клапана; 9 – шайба; 10 – шпилька впускного коллектора; 11 – пробка заливной горловины

Каждая головка является общей для четырех цилиндров. В верхнюю часть головки запрессованы направляющие втулки клапанов. У каждого цилиндра головка крепится шестью равномерно расположенными шпильками 6. В нижней части головки выполнены отверстия для запрессовки седел клапанов. На верхней плоскости головки размещены клапаны с пружинами, коромысла клапанов со стойками, а также латунные стаканы под форсунки. Сверху головка цилиндров закрыта стальной штампованной крышкой 4, которая крепится к головке барашками 5. Уплотнение между крышкой и головкой обеспечивается прокладкой 2. На крышке имеется закрываемая пробкой 11 горловина для заливки в картер масла.

Особое внимание необходимо обратить на последовательность затяжки гаек и болтов крепления головок блока цилиндров. На двигателях КамАЗ-740.11, ЯМЗ-238 затяжку болтов и гаек проводят в последовательности, указанной на рис. 6.

Рис. 6. Последовательность затяжки гаек (болтов) крепления головок блока

цилиндров: (СЛАЙД №12):

а – двигателей ЯМЗ-238; б – КамАЗ-740

Рассмотрим поршневую группу и шатуны.

Поршень. При такте рабочего хода поршень воспринимает давление газов и передает его через шатуны на коленчатый вал. Поршень состоит из трех основных частей (: (СЛАЙД №13): днища 5, уплотняющей части 6 с проточенными в ней канавками для поршневых колец 3, 4 и юбки 7, поверхность которой соприкасается с зеркалом цилиндра. Днище поршня с внутренней поверхностью головки цилиндра, образующее камеру сгорания, непосредственно воспринимает давление газов: оно может быть плоским, выпуклым, а на КамАЗ-740.11 и ЯМЗ-238 - фасонным. Поршни КАМАЗ и Урала (ЯМЗ) (рис. 7).

Рис. 7. Поршни: (СЛАЙД №14):

а – карбюраторных двигателей; б – дизелей КамАЗ; в – дизелей ЯМЗ

Значительное влияние на процесс смесеобразования, как в карбюраторных, так и в дизельных двигателях, имеют формы камер сгорания. От того, как исполнена камера сгорания на двигателе, и зависит конструкция поршня (рис. 7).

Поршни дизелей (рис. 6, б, в) отлиты из алюминиевого сплава. В головках поршней выполнена камера сгорания, которая у КамАЗ-740.11 смещена относительно оси поршня в сторону от выточек под клапаны на 5 мм, а на ЯМЗ-238 расположена по центру. На цилиндрической головке поршня имеется три (на ЯМЗ-238 – четыре) канавки: верхние служат для установки в них компрессионных колец, а одна нижняя – для установки маслосъемного разборного кольца. В средней части поршень имеет две бобышки с отверстиями диаметром для поршневого пальца. Юбка поршня имеет форму конуса овального сечения, что придает ей необходимую прочность. Кроме того, в нижней части юбки поршня двигателя КамАЗ-740.11 имеются боковые выемки для проходов противовеса коленчатого вала.

Чтобы уменьшить силы инерции возвратно-поступательно движущихся масс, поршни, как правило, изготовляют из легких кремнистых алюминиевых сплавов для уменьшения их массы. Для двигателя подбирают поршни, масса которых не отличается более чем на 2-8 г.

Поршневые кольца . Как ранее говорилось, основная функция поршневых колец – уплотнение камеры сгорания и обеспечение герметичности соединения деталей поршень – цилиндр – канавки. Кроме того, при сгорании рабочей смеси значительное количество тепла поглощается поршнем и отводится от него поршневыми кольцами.

Конструктивно поршневое кольцо (рис.8) представляет собой плоскую разрезную пружину с зазором, который называется замком. Замок позволяет устанавливать кольца на поршень и обеспечивает свободное расширение их при нагревании в процессе работы двигателя. Поршневые кольца делятся на компрессионные и маслосъемные.

Рис. 8. Поршневые кольца: (СЛАЙД №14):

а – типы поршневых колец; б – расположение колец на поршне

Компрессионные кольца 2 (рис. 8, а) подбирают таким образом, чтобы они свободно прокатывались по канавке поршня. При установке поршня в цилиндр кольца сжимаются до диаметра цилиндра и плотно прилегают к его поверхности, что предотвращает прорыв газов в картер двигателя и попадание масла со стенок цилиндра в камеру сгорания.

Маслосъемное кольцо 3 снимает излишки масла со стенок цилиндра и отводит его в смазочную ёмкость.

Поршневые кольца изготавливают из легированного чугуна. Поверхность верхнего компрессионного кольца для повышения износостойкости подвергают пористому хромированию, а остальные кольца для ускорения приработки покрывают тонким слоем олова или молибдена.

Чугунное маслосъемное кольцо 3 отличается от компрессионного прорезями 1 для прохода масла. В канавке поршня под маслосъемное кольцо сверлят один или два ряда отверстий для отвода масла внутрь поршня. На многих двигателях применяют стальные составные маслосъемные кольца.

На двигателях КамАЗ-740 установлены два компрессионных кольца и одно маслосъемное, а на ЯМЗ-238 – три компрессионных кольца и одно маслосъемное. Компрессионные кольца в своем сечении имеют трапециидальную форму. Верхнее кольцо покрыто хромом, нижнее – молибденом (на ЯМЗ-238 - оловом). Маслосъемное кольцо коробчатого сечения с витым пружинным расширителем и хромированной рабочей поверхностью.

Маслосъемное кольцо разборное, стальное, имеет два кольцевых диска, радиальный и осевой расширители. Два кольцевых диска снимают с зеркала цилиндра лишнее масло, которое через отверстия в поршне отводится в картер двигателя. Рабочая цилиндрическая поверхность стальных дисков покрывается твердым хромом. Замок колец прямой. После установки колец в цилиндр монтажный зазор в замке должен быть 0,3-0,5 мм. Замки всех колец при установке их на поршень располагают по окружности под углом 120°. При установке стального составного маслосъемного кольца на равные угловые интервалы смещаются только замки компрессионных колец.

Поршневой палец - предназначен для шарнирного соединения поршня с верхней головкой шатуна. Через пальцы передаются значительные усилия, поэтому их изготавливают из легированных или углеродистых сталей с последующей цементацией или закалкой токами высокой частоты. Поршневой палец 10 (рис. 9) представляет собой толстостенную трубку с тщательно отшлифованной наружной поверхностью, проходящую через верхнюю головку шатуна и концами опирающуюся на бобышки 2 поршня (рис. 8). По способу соединения с шатуном наибольшее распространение получили плавающие поршневые пальцы, которые свободно поворачиваются в бобышках и во втулке, установленной в верхней головке шатуна. Осевое перемещение поршневого пальца ограничивается стопорными кольцами 9 (рис. 9), расположенными в выточках бобышек поршня.

Рис. 9. Шатунно-поршневая группа двигателя КамАЗ-740 (СЛАЙД №15):

1 – поршень; 2 – втулка верхней головки шатуна; 3 – шатун; 4 – шатунный болт; 5 – крышка шатуна; 6 – гайки; 7 – метки спаренности; 8 – вкладыш нижней головки шатуна; 9 – стопорное кольцо; 10 – палец; 11 – маслосъемное кольцо; 12 – компрессионные кольца

Шатун - с лужит для соединения поршня с кривошипом коленчатого вала и обеспечивает при такте рабочего хода передачу усилия от давления газов на поршень к коленчатому валу, а при вспомогательных тактах – наоборот, от коленчатого вала к поршню.

Шатуны 3 двигателей ЯМЗ-238 и КамАЗ-740 двутаврового сечения, состоят из верхней головки, нижней головки и крышки 5. Нижняя головка шатуна снабжена сменными вкладышами 8, верхняя головка – запрессованной бронзовой втулкой 2.

Для смазки поршневого пальца в верхней головке шатуна имеется вырез, а во втулке – отверстие, совпадающее с вырезом в шатуне. В стержне шатуна при принудительном смазывании плавающего поршневого пальца (ЯМЗ-238) сверлится сквозное отверстие – масляный канал.

Нижнюю головку шатуна, как правило, делают разъемной в плоскости, перпендикулярной к оси шатуна. В тех случаях, когда нижняя головка имеет значительные размеры и превышает диаметр цилиндра (ЯМЗ-238), плоскость разъема головки выполнена под углом (косой срез), что позволяет монтировать шатун через цилиндр при ремонте за счет уменьшения радиуса окружности, описываемой нижней частью шатуна.

Крышка шатуна изготавливается из той же стали, что и шатун, и обрабатывается совместно с нижней головкой, поэтому перестановка крышек с одного шатуна на другой не допускается. На шатунах и крышках с этой целью делаются метки 7. Чтобы обеспечить высокую точность при сборке нижней головки шатуна, его крышку 5 фиксируют шлифованными поясками болтов 4, которые затягивают гайками 6 и стопорят шплинтами или шайбами. В нижнюю головку устанавливают шатунный подшипник в виде тонкостенных стальных вкладышей 8, которые с внутренней стороны покрыты слоем антифрикционного сплава.

От осевого смещения и проворачивания вкладыши удерживаются выступами (усиками), которые входят в канавки нижней головки шатуна и его крышки.

Для лучшей уравновешенности кривошипно-шатунного механизма разница в массе шатунов не должна превышать 6-8 г. В V-образных двигателях на каждой шатунной шейке коленчатого вала расположены два шатуна. В этих двигателях для правильной сборки шатунно-поршневой группы поршни и шатуны устанавливают строго по меткам.

На крышке и стержне шатуна дизеля КамАЗ-740 метки выбивают в виде трехзначных номеров. Кроме того, на крышке и шатуне выбивают порядковый номер цилиндра.

У шатуна ЯМЗ-238 (рис. 10) на крышке и шатуне со стороны короткого болта выбит порядковый номер цилиндра. На стыке со стороны длинного болта выбиты метки спаренности в виде двузначного числа, одинакового для шатуна и крышки, и риски, охватывающей шатун и крышку.

Рис. 9. Поршень с шатуном (СЛАЙД №15):

1 – поршень; 2 – стопорное кольцо; 3 – шатун; 4 – вкладыши; 5 – крышка шатуна; 6 – замковая шайба; 7 – длинный болт крышки шатуна; 8 – короткий болт; 9 – втулка; 10 – поршневой палец; 11 – маслосъемные кольца; 12 – компрессионные кольца; 13 – тороидальная камера сгорания

Коленчатый вал воспринимает силу давления газов на поршень и силы инерции возвратно-поступательно движущихся и вращающихся масс кривошипно-шатунного механизма.

Силы, передающиеся поршнями на коленчатый вал, создают крутящий момент, который при помощи трансмиссии передается на колеса автомобиля.

Коленчатый вал двигателя КамАЗ-740 (рис. 11), ЯМЗ-238 (рис. 12) стальной, изготовлен горячей штамповкой, подвергается азотированию или закалкой токами высокой частоты шатунных и коренных шеек. Имеет пять коренных опор и четыре шатунные шейки. В шатунных шейках вала выполнены внутренние полости, которые сообщаются с масляными каналами в коренных шейках.

Рис. 11. Коленчатый вал двигателя КамАЗ-740 в сборе (СЛАЙД №16):

1 – передний противовес; 2 – шестерня привода масляного насоса; 3 – втулка; 4 – заглушка шатунной шейки; 5 – задний противовес; 6 – ведущая шестерня; 7 – маслоотражатель; 8 – коленчатый вал

Рис. 12. Коленчатый вал двигателя ЯМЗ-238 с маховиком (СЛАЙД №16):

1 – коленчатый вал; 2 – нижний вкладыш подшипника; 3 – маховик; 4 – полукольцо упорного подшипника; 5 – правая замковая пластинка; 6 – болт крепления маховика; 7 – задний маслоотражатель; 8 – верхний вкладыш подшипника; 9 – передний маслоотражатель; 10 – замковая шайба; 11 – гайка крепления переднего противовеса; 12 – шкив; 13 – шайба шкива; 14 – болт шкива; 15 – передний противовес; 16 – шестерня коленчатого вала; 17 – шпонка

В этих полостях под действием центробежной силы оседают загрязнения моторного масла. Загрязняющие частицы скапливаются во втулках 3 (рис. 11). Полости снаружи закрыты заглушками 4. Уплотнение коленчатого вала обеспечивается резиновыми самоподжимными сальниками, установленными в картере маховика и крышке распределительных шестерен.

На носке и хвостовике коленчатого вала установлены: шестерня 2 привода масляного насоса и ведущая шестерня 6 в сборе с маслоотражателем 7. Выносные противовесы 1 и 5 съемные, закреплены на валу прессовой посадкой

На двигателе КамАЗ-740 осевые перемещения коленчатого вала ограничены четырьмя сталеалюминевыми полукольцами, установленными в проточках задней коренной опоры так, чтобы сторона с канавками прилегала к упорным торцам вала, а ус входил в паз на крышке заднего коренного подшипника.

На двигателе ЯМЗ-238 (рис. 12) для уравновешивания двигателя и разгрузки коренных подшипников от инерционных сил возвратно-поступательно движущихся масс поршней и шатунов и неуравновешенных центробежных сил на щеках коленчатого вала установлены противовесы, в сборе с которыми вал балансируется. Кроме того, в систему уравновешивания входят выносные массы, расположенные в маховике и закрепленные в виде противовеса на носке коленчатого вала. От осевых смещений вал фиксируется четырьмя бронзовыми полукольцами, установленными в выточках задней коренной опоры.

Коренные и шатунные шейки отлиты полыми. Полости шатунных шеек герметично закрыты резьбовыми пробками.

Задний конец коленчатого вала уплотняется сальником, состоящим из двух полуколец, изготовленных из пропитанного графитом асбестового шнура. Полукольца заложены в обоймы и работают, непосредственно соприкасаясь с полированной поверхностью шейки коленчатого вала.

Маховик (рис. 13) служит для обеспечения вывода поршней из мертвых точек, более равномерного вращения коленчатого вала многоцилиндрового двигателя при его режиме холостого хода, облегчения пуска двигателя, снижения кратковременных перегрузок при трогании автомобиля и передачи крутящего момента агрегатам трансмиссии на всех режимах работы двигателя.

Рис. 13. Маховик двигателя КамАЗ-740 (СЛАЙД №17):

1 – зубчатый венец; 2 – фиксатор маховика; 3 – маховик; 4 – установочная втулка; 5 – сухарь отжимного рычага сцепления; 6 – болт крепления маховика; 7 – упорное пружинное кольцо; 8 – установочная втулка; 9 – манжета первичного вала коробки передач

Маховик 3 изготовляют из чугуна и динамически балансируют в сборе с коленчатым валом. На фланце маховик центрируется в строго определенном положении с помощью штифтов или болтов 6, которыми он крепится к фланцу. На обод маховика напрессован (а на ЯМЗ-238 крепят болтами, которые стопорят замковыми шайбами) зубчатый венец 1, предназначенный для вращения коленчатого вала стартером при пуске двигателя.У дизеля КамАЗ-740 маховик центрируется с помощью двух штифтов и крепится болтами непосредственно к коленчатому валу. На торце или ободе маховика многих двигателей наносятся метки, по которым поршень первого цилиндра можно установить в ВМТ на такте сжатия для установки зажигания у карбюраторных двигателей или момента впрыскивания у дизелей.

Маховик ЯМЗ-238 крепят к коленчатому валу восемью болтами, которые стопорят от самоотвертывания замковыми шайбами (одна шайба на два болта).


1.Назначение, устройство, принцип работы

Назначение

Кривошипно-шатунный механизм служит для преобразования поступательного движения поршня под действием энергии расширения продуктов сгорания топлива во вращательное движение коленчатого вала. Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии.

Устройство

Механизм состоит из поршня с поршневыми кольцами и пальцем, шатуна, коленчатого вала и маховика.

Головка цилиндров - общая для всех четырех цилиндров - из алюминиевого сплава. Центрируется на блоке двумя втулками и крепится десятью винтами. Между блоком и головкой (их поверхности должны быть сухими) устанавливается безусадочная металлоармированная прокладка, (ее повторное использование не допускается).

Цилиндры расточены непосредственно в блоке. Номинальный диаметр 82 мм при ремонте может быть увеличен на 0,4 или 0,8 мм. Класс цилиндра маркируется на нижней плоскости блока латинскими буквами в соответствии с диаметром цилиндра в мм: А - 82,00-82,01, В - 82,01-82,02, С - 82,02-82,03, D - 82,03-82,04, Е - 82,04-82,05. Максимально допустимый износ цилиндра составляет 0,15 мм на диаметр.

В нижней части блока цилиндров имеется пять опор коренных подшипников со съемными крышками, которые крепятся к блоку специальными болтами. Крышки невзаимозаменяемы (отверстия под подшипники обрабатываются в сборе с крышками) и маркированы для отличия рисками на наружной поверхности В средней опоре имеются гнезда для упорных полуколец 12, препятствующих осевому перемещению коленчатого вала. Спереди (со стороны шкива коленчатого вала) ставится сталеалюминевое полукольцо, сзади - металлокерамическое. Кольца изготовляются с номинальной и увеличенной на 0,127 мм толщиной. При превышении осевого зазора коленчатого вала 0,35 мм меняются одно или оба полукольца (номинальный зазор - 0,06-0,26 мм).

Вкладыши коренных 13 и шатунных подшипников 11 - тонкостенные сталеалюминевые. Верхние коренные вкладыши первой, второй, четвертой и пятой опор, устанавливаемые в блоке цилиндров, снабжены канавкой на внутренней поверхности. У нижних коренных вкладышей, верхнего вкладыша третьей опоры и шатунных вкладышей канавки отсутствуют. Ремонтные вкладыши выпускаются под шейки коленчатого вала, уменьшенные на 0,25, 0,50, 0,75 и 1,00 мм.

Коленчатый вал 25 изготовлен из высокопрочного чугуна. Он имеет пять коренных и четыре шатунных шейки и снабжен восемью противовесами, отлитыми заодно с валом. Коленчатый вал двигателя 2112 отличается от коленчатого вала двигателей 2110 и 2111 формой противовесов и повышенной прочностью. Поэтому не допускается установка коленчатого вала от двигателей 2110 и 2111 в двигатель 2112. Для подачи масла от коренных шеек к шатунным в коленчатом вале просверлены каналы 14, выходные отверстия которых закрыты запрессованными заглушками 26.

На переднем конце коленчатого вала на сегментной шпонке установлен зубчатый шкивпривода распределительного вала 28, к нему крепится шкив привода генератора 29, который также является демпфером крутильных колебаний коленчатого вала. На зубчатом венце шкива два зуба из 60 отсутствуют - впадины служат для работы датчика положения коленчатого вала.

К заднему концу коленчатого вала шестью самоконтрящимися болтами через общую шайбу 21 крепится маховик 24, отлитый из чугуна, с напрессованным стальным зубчатым венцом 23, служащим для пуска двигателя стартером. Конусообразная лунка около венца маховика должна находиться напротив шатунной шейки четвертого цилиндра (это необходимо для определения ВМТ после сборки двигателя).

Шатун 3 является стальным, обрабатывается вместе с крышкой 1, и поэтому они в отдельности невзаимозаменяемы. Чтобы при сборке не перепутать крышки и шатуны, на них клеймится номер цилиндра, в который они устанавливаются. При сборке цифры на шатуне и крышке должны находиться с одной стороны.

Поршень 4 отливается из высокопрочного алюминиевого сплава. Поскольку алюминий имеет высокий температурный коэффициент линейного расширения, то для исключения опасности заклинивания поршня в цилиндре в головке поршня над отверстием для поршневого пальца залита терморегулирующая стальная пластина 5.

В верхней части поршня проточены три канавки под поршневые кольца. Канавка маслосъемного кольца имеет выходящие в бобышки сверления, по которым масло, собранное кольцом со стенок цилиндра, поступает к поршневому пальцу от. Ось отверстия под поршневой палец смещена на 1,2 мм от диаметральной плоскости поршня в сторону расположения клапанов двигателя. Благодаря этому поршень всегда прижат к одной стенке цилиндра, и устраняются стуки поршня о стенки цилиндра при переходе его через ВМТ. Однако, это требует установки поршня в цилиндр в строго определенном положении. При установке поршня необходимо ориентироваться по стрелке, выбитой на днище (она должна быть направлена в сторону шкива коленчатого вала). У поршней двигателя 2112 днище плоское, с четырьмя углублениями под клапаны (у поршней двигателей 2110 и 2111 днище имеет овальную выемку).

Измерять диаметр поршня для определения его класса можно только в одном месте: в плоскости, перпендикулярной поршневому пальцу на расстоянии 51,5 мм от днища поршня. В остальных местах диаметр поршня отличается от номинального, т.к. наружная поверхность поршня имеет сложную форму. В поперечном сечении она овальная, а по высоте коническая. Такая форма позволяет компенсировать неравномерное расширение поршня из-за неравномерного распределения массы металла внутри поршня.

Поршни по наружному диаметрукак и цилиндры, подразделяются на пять классов (маркировка - на днищe). Диаметр поршня (для номинального размера, мм): А - 81,965-81,975; B - 81,975-81,985; С - 81,985-81,995; D - 81,995-82,005; Е - 82,005-82,015. В продажу поступают поршни классов A, С и E (номинального и ремонтных размеров): расчетный зазор между ними - 0,025-0,045 мм, а максимально допустимый зазор при износе - 0,15 мм. Не рекомендуется устанавливать новый поршень в изношенный цилиндр без его расточки: проточка под верхнее поршневое кольцо в новом поршне может оказаться чуть выше, чем в старом, и кольцо может сломаться о "ступеньку", образующуюся в верхней части цилиндра при его износе. У поршней ремонтных размеров на днище выбивается треугольник (+ 0,4 мм) или квадрат (+ 0,8 мм).

По массе поршни сортируются на три группы: нормальную, увеличенную на 5 г и уменьшенную на 5 г. Этим группам соответствует маркировка на днище поршня: Г, + и -.

Поршни одного двигателя подбирают по массе (разброс не должен превышать 5 г) - это делается для уменьшения дисбаланса кривошипно-шатунного механизма.

Поршневой палец 10 стальной, трубчатого сечения, запрессован в верхнюю головку шатуна и свободно вращается в бобышках поршня. От выпадения онзафиксирован двумя стопорными пружинными кольцами, которые располагаютсяпроточках бобышек поршня. По наружному диаметру пальцы сортируются на три категории через 0,004 мм соответственно категориям поршней. Торцы пальцев окрашиваются в соответствующий цвет: синий -первая категория, зеленый — вторая и красный — третья. Поршневые кольца обеспечивают необходимое уплотнение цилиндра и отводят тепло от поршня к его стенкам. Кольца прижимаются к стенкам цилиндра под действием собственной упругости и давления газов. На поршне устанавливаются три чугунных кольца — два компрессионных 7, 8 (уплотняющих) и одно (нижнее) маслосъемное 6, которое препятствует попаданию масла в камеру сгорания.

Верхнее компрессионное кольцо 8 работает в условиях высокой температуры, агрессивного воздействия продуктов сгорания и недостаточной смазки, поэтому для повышения износоустойчивости наружная поверхность хромирована и для улучшения прирабатываемости имеет бочкообразную форму образующей.

Нижнее компрессионное кольцо 7 имеет снизу проточку для собирания масла при ходе поршня вниз, выполняя при этом дополнительную функцию маслосбрасывающего кольца. Поверхность кольца для повышения износоустойчивости и уменьшения трения о стенки цилиндра фосфатируется.

Маслосъемное кольцо имеет хромированные рабочие кромки и проточку на наружной поверхности, в которую собирается масло, снимаемое со стенок цилиндра. Внутри кольца устанавливается стальная витая пружина, которая разжимает кольцо изнутри и прижимает его к стенкам цилиндра. Кольца ремонтных размеров изготавливаются (так же, как и поршни) с увеличенным на 0,4 и 0,8 мм наружным диаметром.

Смазка двигателя - комбинированная. Под давлением смазываются коренные и шатунные подшипники, пары "опора - шейка распредвала, гидротолкатели. Разбрызгиванием масло подается на стенки цилиндров (далее к поршневым кольцам и пальцам), на днище поршней, к паре "кулачок распределительного вала толкатель и стержням клапанов. Остальные узлы смазываются самотеком.

Принцип работы

Если в цилиндр ввести заряд горючей смеси, необходимый для поддержания горения, а затем его зажечь электрической искрой, выделится большое количество тепла и давление в цилиндре повысится. Давление расширяющихся газов передастся во все стороны, в том числе и на поршень, заставляя его перемещаться. Так как поршень шарнирно соединен с верхней головкой шатуна при помощи пальца, а нижняя головка шатуна подвижно закреплена на шейке коленчатого вала, то при перемещении поршня вместе с шатуном вращается коленчатый вал и закрепленный на его конце маховик. При этом прямолинейное движение поршня при помощи шатуна и коленчатого вала преобразуется во вращательное движение маховика.

Первый такт - впуск - поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точки (м.н.т.), клапан впускного отверстия открыт, а выпускного - закрыт. В цилиндре создается разряжение, и горючая смесь заполняет его. Следовательно, такт впуска служит для наполнения цилиндра свежим зарядом горючей смеси.

Второй такт - сжатие - поршень перемещается от н.м.т. к в.м.т., оба отверстия закрыты клапанами. Объем рабочей смеси уменьшается в 6,5-7,0 раз, температура повышается до 300-400°C, в результате чего давление в цилиндре повышается до 10-12 кГ/см2. Такт сжатие служит для лучшего перемешивания рабочей смеси и подготовки ее к воспламенению.

Третий такт - сгорание и расширение газов. В конце такта сжатия между электродами свечи возникает электрическая искра, которая воспламеняет рабочую смесь. Выделено при сгорании рабочей смеси тепло нагревает газы до температуры 2200-2500°C; при этом газы расширяются и создают давление в 35-40 кГ/см2, под действием которого поршень перемещается вниз от в.м.т. к н.м.т. Оба отверстия закрыты клапанами. Движение поршня при этом также называют рабочим ходом. При рабочем ходе действующее на поршень давление газов через поршневой палец и шатун передается на кривошип, создавая на коленчатом валу крутящий момент. Рабочий ход поршня служит для преобразования тепловой энергии сгорания топлива в механическую работу.

Четвертый такт - выпуск - поршень перемещается вверх от н.м.т. к в.м.т. Впускное отверстие закрыто. Отработавшие газы выпускаются из цилиндра в атмосферу. Назначение такта выпуска - очистить цилиндр от отработавших газов.

При работе двигателя процессы, происходящие в цилиндре, беспрерывно повторяются в указанном порядке.

Рабочим циклом двигателя называется совокупность процессов, происходящих в цилиндре в определенной последовательности - впуск, сжатие, рабочий ход и выпуск.

Поршень, перемещаясь в цилиндре, достигает то верхнего, то нижнего крайних положений. Крайние положения, в которых поршень меняет направление движения, соответственно называются верхней и нижней мертвыми точками

Расстояние, которое приходит поршень между мертвыми точками, называется ходом поршня. За каждый ход поршня коленчатый вал повернется на Ѕ оборота, или на 180°. Процесс, происходящий внутри цилиндра за один ход поршня, называется тактом.

При перемещении поршня от верхней мертвой точки к нижней в цилиндре освобождается пространство, которое называется рабочим объемом цилиндра.

Когда поршень находится в верхней мертвой точке, над ним наименьшее пространство, называемое объемом камеры сгорания.

Рабочий объем цилиндра и объем камеры сгорания, вместе взятые, составляют полный объем цилиндра. В многоцилиндровых двигателях сумма рабочих объемов всех цилиндров выражается в литрах и называется литражом двигателя.

Одним из важных показателей двигателя является его степень сжатия, определяемая отношением полного объема цилиндра к объему камеры сгорания. С повышением степени сжатия двигателя повышается его экономичность и мощность.

2.Основные неисправности КШМ

Технически исправный двигатель должен развивать полную мощность, работать без перебоев на полных нагрузках и холостом ходу, не перегреваться, не дымить и не пропускатьмасло через уплотнения.

Основными признаками неисправности кривошипно-шатунного механизма являются:

1) уменьшение давления в конце такта сжатия (компрессии) в цилиндрах;

2) появление шумов и стуков при работе двигателя;

3) прорыв газов в картер, увеличение расхода масла;

4) разжижение масла в картере (из-за проникновения туда паров рабочей смеси при тактах сжатия);

5) поступление масла в камеру сгорания и попадание его на свечи зажигания, отчего на электродах образуется нагар и ухудшается искрообразование. В итоге снижается мощность двигателя, повышается расход топлива и содержание СО в выхлопных газах.

Снижение мощности двигателя

- может сопровождаться затрудненным пуском, неустойчивой работой на различных режимах, повышением расхода топлива, увеличением процента содержания СО и СН в отработанных газах.

Причины:

Снижение компрессии в цилиндрах:

Износ ЦПГ - приводит к увеличению зазора, что способствует прорыву газов из камеры сгорания, под воздействием различных факторов меняется геометрическая форма- появляется овальность, износ цилиндров на конус, так как в верхней их части самые неблагоприятные условия работы.

Износ, поломка и выпадение поршневых колец или залегание в поршневых канавках

происходит при несвоевременной замене загрязненного масла или при использовании сортов масла с большим содержанием лаков и смол, приводит к засорению канавок с последующим пригоранием колец, которые перестают пружинить и сдерживать прорывающиеся газы, а их острые кромки начинают “шабрить” зеркало цилиндров.

Ослабление крепления головки блока

приводит к прорыву как сжатой рабочей смеси, так и отработанных газов, что вызывает быстрое прогорание прокладки головки блока и может привести к короблению самой головки, особенно при перегреве двигателя.

Повышенный шум при работе

Причины:

Повышенный износ деталей

Неудовлетворительная смазка деталей

например, при пониженном уровне смазки в поддоне картера и чрезмерном разжижении её, при использованиималовязких сортов в жарких климатических условиях.

Механические повреждения и аварийные поломки

Причины:

Нарушение технологии сборки

Заводской дефект деталей или чрезмерный износ их в процессе эксплуатации

Нарушение нормальной работы двигателя - например, сильная детонация может привести к прогоранию поршней, обрыву шатунов, поломке коленчатого вала.

Проворачивание вкладышей подшипников - обычно приводит к заклиниванию двигателя.

3.Диагностирование КШМ

Стук и шумы в двигателе возникают в результате износа его основных деталей и появления между сопряженными деталями увеличенных зазоров. Стуки в двигателе прослушиваются при помощи стетоскопа, что требует определенного навыка.

Обычно при большом износе вкладышей происходит выплавление его антифрикционного слоя, что сопровождается резким падением давления масла. В этом случае двигатель должен быть немедленно остановлен, так как дальнейшая его работа может привести к поломке деталей.

Повышенный расход масла, перерасход топлива, появление дыма в отработавших газах (при нормальном уровне масла в картере) обычно появляются при залегании поршневых колец или износе колец цилиндров. Залегание кольца можно устранить без разборки двигателя, для чего в каждый цилиндр горячего двигателя следует залить на ночь через отверстие свечи зажигания по 20 г смеси равных частей денатурированного спирта и керосина. Утром двигатель следует пустить, дать поработать 10-15 мин, после чего заменить масло.

Прослушивание стетоскопом

Перед диагностированием двигатель следует прогретьдо температуры охлаждающей жидкости (90+-5) С. Прослушивание проводят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма.

Работу поршень-цилиндр прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю - стуки сильного глухого тона, усиливающиеся с увеличением нагрузки, свидетельствует о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д.

Сопряжение поршневое кольцо -канавка проверяют на уровнеНМТ хода поршня на средней частоте вращения КВ - слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износеили поломке колец.

Сопряжение поршневой палец - втулка верхней головкишатуна проверяют на уровне ВМТ при малой частоте вращения КВ с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения.

Работы сопряжения коленчатый вал - шатунный подшипник прослушивают на малой и средней частотах вращения КВ(ниже НМТ). Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников КВ прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения КВ: сильный глухой стук низкого тона свидетельствует об износе коренных подшипников.

Проверка компрессии

Компрессию в цилиндрах определяют компрессометром, представляющим собой корпус с вмонтированным в него манометром. Манометр соединен с одним концом трубки, на другом конце которой имеется золотник с резиновым наконечником, плотновставляемым в отверстие для свечи зажигания. Проворачивая коленчатый валдвигателя стартером или пусковой рукояткой, измеряют максимальное давление вцилиндре и сравнивают его с нормативными.

Для бензиновых двигателей номинальные значения компрессии составляют0,75...1,5 (7 - 15 кгс/cм2). Падение мощности двигателя возникает при износе или залегании в канавках поршневых колец, износе поршней и цилиндров, а также плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре.

Расход сжатого воздуха, подаваемоговцилиндры

Для определения утечки сжатого воздуха из надпоршневого пространства применяют прибор К-69М . Воздух в цилиндры прогретого двигателя подают либо через редуктор 1 прибора, либо непосредственно из магистрали по шлангу 4 в цилиндр 7 через штуцер 6, ввернутый в отверстие для свечи или форсунки, к которому присоединяется шланг 3 при помощи быстросъемной муфты 5.

В первом случае проверяют утечку воздуха или падение давления из-за не плотностей в каждом цилиндре двигателя. Для этого рукояткой редуктора 1 прибор настраивают так, чтобы при полностью закрытом клапане муфты 5 стрелка манометра находилась против нулевого деления, что соответствует давлению 0,16 М Па, а при полностью открытом клапане и утечке воздуха в атмосферу - против деления 100%.

Относительную неплотность цилиндропоршневой группы проверяют при установке поршня проверяемого цилиндра в двух положениях: в начале и конце такта сжатия. Поршень от движения под давлением сжатого воздуха фиксируют, включая передачу в коробке передач автомобиля.

Такт сжатия определяется свистком-сигнализатором, вставляемым в отверстие свечи (форсунки).

Состояние поршневых колец и клапанов оценивают по показаниям манометра 2 при положении поршня в в.м.т., а состояние цилиндра (износ цилиндра по высоте) - по показаниям манометра при положении поршня в начале и конце такта сжатия и по разности этих показаний.

Полученные данные сравнивают со значениями, при которых дальнейшая эксплуатация двигателя недопустима. Предельно допустимые значения утечки воздуха для двигателей с различными диаметрами цилиндров указаны в инструкции прибора.

Чтобы определить место утечки (неисправность), воздух под давлением 0,45-06 МПа подают из магистрали по шлангу 4 в цилиндры двигателя.

Поршень при этом устанавливают в конце такта сжатия в верхней мертвой точке.

Место прорыва воздуха через неплотность определяют прослушиванием при помощи фонендоскопа.

Утечка воздуха через клапаны двигателя обнаруживается визуально по колебанию пушинок индикатора, вставляемого в отверстие свечи (форсунки) одного из соседних цилиндров, где открыты в данном положении клапаны.

Утечка воздуха через поршневые кольца определяется только прослушиванием при положении поршня в н.м.т. в зоне минимального износа цилиндров. Утечка через прокладку головки цилиндров обнаруживается по пузырькам в горловине радиатора или в плоскости разъема.

Суммарный зазор в верхней головке шатунаи шатунном подшипнике

Измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике является еще одним результативным методом проверки состояния кривошипно-шатунного механизма. Проверку осуществляют при неработающем двигателе при помощи устройства КИ-11140.

Наконечник 3 с трубкой устройства устанавливают на место снятой свечи зажигания или форсунки проверяемого цилиндра. К основанию 2 через штуцер присоединяют компрессорно-вакуумную установку. Поршень устанавливают за 0,5 - 1,0 мм от в.м.т. на такте сжатия, стопорят коленчатый вал от проворачивания и с помощью компрессорно-вакуумной установки попеременно создают в цилиндре давление 200 кПа и разряжение 60 кПа. При этом поршень, поднимаясь и опускаясь, выбирает зазоры, сумма которых фиксируется индикатором 1.

Номинальный расчетный зазор составляет 0,02-0,07 мм для шатунных.

Количество газов, прорывающихся в картер

Состояние сопряжения поршень—поршневые кольца—цилиндр можно оценить по количеству газов, прорывающихся в картер. Этот диагностический параметр измеряют расходомером КИ-4887-1

1—3 - манометры, 4входной патрубок, 5, 6 - краны, 7 эжектор

Предварительно прогреть двигатель до нормального режима. Прибор имеет трубу с входным 5 и выходным 6 дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют к вакуумной установке. В результате разрежения в эжекторе картерные газы поступают в расходомер. Устанавливая при помощи кранов 5 и б жидкость в столбиках манометров 2 и 3 на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления АА устанавливают по манометру / одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным.

4.Техническое обслуживание

При ЕО двигатель очищают от грязи, проверяют его состояние визуально и прослушивают работу в разных режимах.

При Т0-1 проверяют крепление опор двигателя. Проверить герметичность соединения головки цилиндров, поддона картера, сальника коленчатого вала. При не плотном соединении головки с блоком, будут видны подтеки масла на стенках блока цилиндров. При неплотном соединении поддона картера и сальника КВ судят по подтекам масла.

При ТО-2 необходимо подтянуть гайки крепления головкицилиндров. Подтяжку головки из алюминиевого сплава производят на холодном двигателе динамометрическим ключом либо обычным без применения насадок. Усилие должно быть в пределах 7,5 - 7,8 кгс*м. Подтяжка должна производиться от центра, постепенно перемещаясь к краям и при этом должна идти крест на крест, без рывков (равномерно). Подтянуть крепление поддона картера.

СО 2 раза в годпроверитьсостояние ЦПГ.

5.Разборка, ремонт, сборка, диагностика

Разборка

Для выполнения работы потребуются: набор ключей, динамометрический ключ, смотровая яма или эстакада, регулируемый по высоте упор (например, винтовой домкрат), подъемное устройство (таль, тельфер или лебедка грузоподъемностью не менее 100 кг) или второй регулируемый упор. Работу лучше выполнять с помощником.

  1. Ослабив затяжку хомута, снимаем шланг вентиляции картера с патрубка блока цилиндров.

2. Ключом на 10 мм отворачиваем два болта крепления подводящей трубы к блоку цилиндров и отсоединяем ее от блока.

Замечание.

Соединение уплотнено прокладкой

3. Снимаем датчик детонации

4. Снимаем датчик положения коленчатого вала

5. Снимаем насос охлаждающей жидкости

6. Снимаем стартер

7. Снимаем генератор

Снимаем зубчатый шкивпривода распределительного вала

Замечание

На 16-клапанных двигателях отсоединяем нижнюю штангу крепления двигателя от поперечины передней подвески, торцовым ключом на 17 мм отворачиваем три болта крепления нижнего кронштейна генератора и снимаем кронштейн в сборе со штангой

8. Устанавливаем регулируемый упор под коробку передач и подвешиваем блок цилиндров к подъемному устройству или устанавливаем регулируемый упор под блок цилиндров. Слегка приподнимаем блок цилиндров, разгружая опоры силового агрегата.

9. Снимаем нижнюю крышку картера сцепления и отворачиваем болты крепления коробки передач к блоку цилиндров.

10. Отворачиваем верхнюю гайку болта подушки правой опоры.

11. Торцовым ключом на 13 мм отворачиваем три болта крепления кронштейна правой опоры двигателя к блоку цилиндров.

15. Снимаем кронштейн опоры двигателя в сборе с верхним кронштейном крепления генератора.

16. Торцовым ключом на 15 мм под правым передним крылом автомобиля отворачиваем три болта крепления кронштейна опоры к правому лонжерону.

17. Снимаем кронштейн вместе с правой опорой силового агрегата.

18. Слегка покачивая блок цилиндров, отсоединяем его от коробки передач и вынимаем из моторного отсека.

19. Снимаем маховик

20. Торцовым ключом на 10 мм отворачиваем шесть болтов крепления держателя заднего сальника коленчатого вала и снимаем его.

Замечание

Под держателем установлена прокладка, которую при сборке необходимо заменить.

21. Снимаем масляный насос

22. Торцовым ключом на 17 мм отворачиваем по два болта крепления пяти крышек коренных подшипников.

23. Снимаем крышки коренных подшипников.

24. Вынимаем из крышек нижние вкладыши коренных подшипников.

25. Вынимаем коленчатый вал из блока цилиндров.

26. Из проточек третьей опоры вынимаем два упорных полукольца.

27. Из опор блока цилиндров вынимаем верхние вкладыши коренных подшипников.

28. Отмываем блок цилиндров от грязи и отложений специальным моющим средством, дизельным топливом или керосином, продуваем масляные каналы.

29. Тонкой медной проволокой прочищаем выходные отверстия масляных форсунок на двигателях ваз 2112, 21124 и 21114.

30. Вытираем блок насухо и осматриваем его. Трещины и выкрашивание металла - недопустимы.

31. Микрометром измеряем коренные шейки коленчатого вала, а также шатунные шейки.

Ремонт

Трещины в любом месте коленчатого вала не допускаются

Процесс восстановления шатунных шеек

Таблица ремонтных размеров вкладышей и шеек КВ

Коренные шейки

Шатунные шейки

Номинальный размер

1-ый ремонтный (- 0,25)

2-ой ремонтный(- 0,50)

3-ий ремонтный(- 0,75)

4-ый ремонтный(- 1,00)

Ремонт произвожу наплавкой в углеродной среде.

Диагностика

После ремонта вал должен проходить по следующим параметрам

1) Допустимые биения основных поверхностей коленчатого вала

Установите коленчатый вал крайними коренными шейками на две призмы и проверьте индикатором биение:

Коренных шеек и посадочной поверхности под ведущую шестерню масляного насоса (не более 0,03 мм);

Посадочной поверхности под маховик (не более 0,04 мм);

Посадочной поверхности под шкивы и поверхностей, сопрягающихся с сальниками (не более 0,05 мм).

Смещение осей шатунных шеек от плоскости, проходящей через оси шатунных и коренных шеек, после шлифования должно быть в пределах ±0,35 мм. Для проверки установите вал крайними коренными шейками на призмы и выставьте вал так, чтобы ось шатунной шейки первого цилиндра находилась в горизонтальной плоскости, проходящей через оси коренных шеек. Затем индикатором проверьте смещение в вертикальном направлении шатунных шеек 2, 3 и 4 цилиндров относительно шатунной шейки 1-го цилиндра.

Полукольца заменяются также, если осевой зазор коленчатого вала превышает максимально допустимый - 0,35 мм. Новые полукольца подбирайте номинальной толщины или увеличенной на 0,127 мм, чтобы получить осевой зазор в пределах 0,06-0,26 мм.

Измерение зазора в шатунном подшипнике: 1 - сплющенная калиброванная пластмассовая проволока; 2 - вкладыш; 3 - крышка шатуна; 4 - шкала для измерения зазора

Снимите крышку и по шкале, нанесенной на упаковке, по сплющиванию проволоки определите величину зазора.

Номинальный расчетный зазор составляет 0,02-0,07 мм для шатунных и 0,026-0,073 мм для коренных шеек. Если зазор меньше предельного (0,1 мм для шатунных и 0,15 мм для коренных шеек), то можно снова использовать эти вкладыши.

Сборка

Обработать гнезда фрезой А.94016/10.

Промыть КВ от остатков абразива и продуть сжатым воздухом.

Обезжирить посадочные места под заглушки (уайт-спирит ГОСТ 3134-78, ветошь ТУ 68-178-77-82).

Установить новые заглушки масляных каналов на герметик и зачеканить в 3 точках (оправка А.86010, зубило ГОСТ 7211-72, молоток ГОСТ 2310-77, герметизатор резьбовых соединений ТУ 6-10-1048-78).

32. Подбираем соответствующие кольца, вкладыши подшипников коленчатого вала

33. Обезжириваем гнезда вкладышей в опорах и крышках коренных подшипников.

34. Укладываем в гнезда опор вкладыши коренных шеек с канавками.

35. В крышки подшипников укладываем вкладыши без канавок.

36. В проточки третьей коренной опоры устанавливаем упорные полукольца. С передней стороны сталеалюминиевое (с внутренней стороны белое, а с наружной желтое), с задней - металлокерамическое (желтое с обеих сторон).

Замечание

Полукольца изготавливаются номинальной и увеличенной на 0,127 мм толщины. Осевое перемещение коленчатого вала должно быть в пределах 0,06-0,26 мм

37. Полукольца устанавливаем канавками наружу (к щекам коленчатого вала)

38. Смазываем шейки коленчатого вала и вкладыши чистым моторным маслом.

39. Укладываем вал в опоры блока цилиндров и устанавливаем крышки коренных подшипников.

На крышках рисками обозначены номера подшипников (с 1-го по 5-й). Крышка пятого коренного подшипника обозначена двумя рисками, разнесенными к краям крышки.

При установке в блок крышки должны быть рисками обращены к той стороне блока, на которой устанавливается направляющая указателя уровня масла.

40. Затягиваем болты крепления крышек динамометрическим ключом моментом 68,31-84,38 Н·м (6,97-8,61 кгс·м). Гайки шатунных болтов затягиваем моментом 51 Н·м (5,2 кгс·м)

41. Дальнейшую сборку выполняем в обратном порядке.

6.Способы восстановления КВ

Восстановление деталей имеет большое народнохозяйственное значение. Стоимость восстановления деталей в 2 - 3 раза ниже стоимости их изготовления. Это объясняется тем, что при восстановлении деталей значительно сокращаются расходы материалов, электроэнергии и трудовых ресурсов.

Эффективность и качество восстановления деталей зависят от принятого способа.

Наиболееширокоеприменениеполучилиследующие восстановления деталей: механическая обработка; сварка и наплавка; напыление;гальваническаяихимическаяобработка;обработка давлением; применение синтетических материалов.

Механическую обработку применяют в качестве подготовительной или завершающей операции при нанесении покрытий на изношенные поверхности, а также при восстановлении деталей обработкой под ремонтный размер или постановкой дополнительных ремонтных деталей. Обработкой деталей под ремонтный размер восстанавливают геометрическую форму их рабочих поверхностей, а установкой дополнительной ремонтной детали обеспечивают соответствие размеров детали размерам новой детали.

Сварка и наплавка - самые распространенные способы восстановления деталей. Сварку применяют при устранении механических повреждений деталей (трещин, пробоин и т. п.), а наплавку - для нанесения покрытий с целью компенсации износа рабочих поверхностей. На ремонтных предприятиях применяют как ручные, так и механизированные способы сварки и наплавки. Среди механизированных способов наплавки наибольшее применение нашли автоматическая дуговая наплавка под флюсом и в среде защитных газов и вибродуговая наплавка. В настоящее время при восстановлении деталей применяют такие перспективные способы сварки, как лазерная и плазменная.

Напыление как способ восстановления деталей основан на нанесении распыленного металла на изношенные поверхности деталей. В зависимости от способа расплавления металла различают следующие виды напыления: дуговое, газопламенное, высокочастотное, детонационное и плазменное.

Гальваническая и химическая обработка основаны на осаждении металла на поверхности деталей из растворов солей гальваническим или химическим методом. Для компенсации износа деталей наиболее часто применяют хромирование, железнение и химическое никелирование. Нанесение на поверхности деталей защитных покрытий осуществляют с помощью гальванических процессов (хромирование, никелирование, цинкование, меднение), а также химических (оксидирование и фосфатирование).

Обработкой давлением восстанавливают не только размеры деталей, но и их форму и физико-механические свойства. В зависимости от конструкции детали используют такие виды обработки давлением, как осадку, раздачу, обжатие, вытяжку, накатку, правку и др.

Перечисленные способы восстановления деталей обеспечивают требуемый уровень качества и надежную работу деталей в течение установленных межремонтных пробегов автомобилей. Необходимый уровень качества восстановленных деталей достигается при правильном выборе технологического способа, а также управлением процессами нанесения покрытий и последующей обработки деталей. На качество восстановленных деталей влияют свойства исходных материалов, применяемых при нанесении покрытий, и режимы обработки.

Для восстановления шатунных шеек КВ под номинальный размер:

1) Промываю КВ.Замеряю диаметры шатунных шеек. Затемустановливаю КВ вал на токарном станке, для этого коленчатый вал устанавливается на станке таким образом, чтобы его ось вращения проходила через одну из шатунных шеек, для этого необходимы центросместители, которые совмещают ось вращения шатунных шеек с осью вращения шпинделя станка, причем величина смещения должна быть равна радиусу кривошипа.(37.8 мм)

Смещенный коленчатый вал, вращаясь вокруг оси одной из шатунных шеек несбалансирован. Такой большой дисбаланс при вращении обязательно приведет к деформации самого коленчатого вала и элементов станка, в результате чего качество шлифовки коленвала резко снизится - исказится форма шейки (появится эллипс), ее ось окажется непараллельной оси коренных шеек.

Исключить или, по крайней мере, значительно уменьшить дисбаланс коленчатого вала позволяют специальные грузы, закрепляемые на планшайбах напротив патронов станка. Масса и расположение балансировочных грузов подбирается в зависимости от массы коленчатого вала и радиуса кривошипа.

Обрабатываю (снимаю имеющиеся риски и задиры) резцом из стали ВК61 и 4 шатунные шейки. После обработкиустанавливаем КВ таким образом что бы теперь с осью вращения станка совпадали 2 и 3 шатунные шейки. Срезаю по 0,5 мм.

2) Замеряю получившиеся размеры шеек. Произвожу наплавку шеек с помощью сварочного выпрямителя ВДУ-506 в среде углекислого газа. Подачу электродной проволоки к месту наплавки произвожу при помощи наплавочной головки ОКС-6569 используя при этом проволоку 30ХГСА. (наплавочная проволока, легированная конструкционная сталь, А-высококачественная; 0,3%- углерода, Х - хром 1%, Г - марганец 1%, С - кремний 1%)с припуском на токарную обработку, шлифование и суперфиниширование.

Наплавка производится на постоянном токедиаметром электрода 1,2 мм из кассеты непрерывно подается в зону сварки. Ток 150..190 А и напряжением 19…21 Вк электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки.этом скорость наплавки составляет 20…30 м/ч, смещение электродной проволоки 18…20 мм, шаг наплавки 18…20 мм, вылет электрода 10…13 мм, расход углекислого газа 8…9 л/мин.При наплавке металл электрода и детали перемешивается, толщина наплавляемого слоя 0,8…1,0мм. В зону горения дуги под давлением 0,05…0,2 МПа по трубке подается углекислый газ, который вытесняя воздух, защищает расплавленный металл от вредного действия кислорода и азота воздуха.

Углекислый газ из баллона 7 подается в зону горения. При выходе из баллона 7 газ резко расширяется и переохлаждается. Для подогрева его пропускаю через электрический подогреватель 6. Содержащуюся в углекислом газе воду удаляетсяс помощью осушителя 5, который представляет собой патрон, наполненный обезвоженным медным купоросом или силикагелем. Давление газа понижают с помощью кислородного редуктора 4, а расход его контролируют расходомером 3.

Установка для наплавки в углекислом газе

1 — кассета с проволокой; 2 — наплавочный аппарат; 3 — расходомер; 4 — редуктор; 5 — осушитель; 6 — подогреватель; 7 — баллон с углекислым газом; 8 — деталь

3) Обрабатываю шейки КВ на токарном станке, оставляя припуск на шлифование 0,3-0,5мм

4) Шлифую шейки с использованием шлифовального круга типа 24А40НС 16 А5 (ГОСТ 2424—75) на станке ЗУ131, до номинального размера 47,850 мм, оставляя припуск на суперфиниширование. При соприкосновении шлифовального круга с шейкой коленчатого вала включается подача охлаждающей жидкости.

Режим шлифования: частота вращения коленчатого вала 1,03 с"1 (62 обмин), шлифовального круга — 13—13,8 с"1 (780— 830 обмин); шлифовальный круг правят алмазным карандашом марки CI—1 (ГОСТ 607—SO Е).

Овальность и конусность не должна превышать0,005

5) Для доводки шеек вместо полирования применяю суперфиниширование. Суперфиниширование выполняю головкой, оснащенной абразивными брусками на специальном полуавтомате 3875 К.Зернистость брусков 4-8.Суперфиниширование выравнивает точность размеров. При шлифовании валов под суперфиниширование оставляют припуск 0,005мм.

6) Проверяю КВ на биение, овальность и конусность шеек.

7.Химический состав и механические свойства КВ

Механические свойства

Сталь - это сплав железа с углеродом в котором содержится углерода до 2,14%

Стали классифицируются по:

1) Химическому составу:

а) углеродистые

б) легированные

2) Назначению:

а) Конструкционные

б) Инструментальные

в) Специальные

3) Качеству:

а) Обыкновенное

б) Качественное

в) Высококачественное

г) Особовысококачественное

4) Степени раскисления:

а) Кипящее (КП)

б) Спокойное (СП)

в) Полуспокойное (ПС)

5)Способ поставки делятся на 3 группы:

группа А - сталь поставляется по механическим свойствам, буква А не указывается.

группа Б - сталь поставляется по химическому составу

группа В = А+Б

Чугун - это сплав железа с углеродом в котором углерода содержится от 2,14- 6,67%.

Сорта чугунов.

1. Белый чугун. Углерод находится в виде цементита (Fe3C). Твердый, хрупкий плохо обрабатывается резанием.

2. Серый чугун. Углерод находится в свободном состоянии в виде графита. Это литейные чугуны, в них графит имеет форму пластинок. Менее прочный, обладает литейными свойствами, хорошо сопротивляется износу, способность гасит вибрации.

3. Легированный серый чугун. Имеет мелкозернистую структуру и лучшее строение графита за счет присадок в небольших количествах никеля, хрома и молибдена иногда титана и меди.

4.Высокопрочный чугун. Разновидность серого чугуна модифицированного магнием. Одновременно в жидкий чугун вводят железо с кремнием, в результате получают графит в шаровидной форме.

5. Ковкий чугун. Высокие анти коррозионные свойства, хорошо работает в среде влажного воздуха, воды, топочных газов. Из него изготавливают детали, которые воспринимают ударные нагрузки.

Коленчатый вал ВАЗ-2112 изготовлен из ВЧ. Цифрры за буквами ВЧ - высокопрочный чугун означают временное сопротивление разрушению при растяжении. Например, чугун марки ВЧ 60 должен иметьу в =60 кгс/мм 2 илиу в =600 МПа. Для высокопрочного чугуна характерна шаровидная форма графита, получают его путем модифицирования низкозернистого серого чугуна чистым магнием или магнийсодержащими добавками. Высокопрочный чугун нашел широкое применение в автомобилестроении (коленчатые и распределительные валы, шестерни различных механизмов, блоки цилиндров и т.п.), тяжелом машиностроении (детали турбин, прокатные валки, шаботы молотов и т.п.), транспортном, сельскохозяйственном машиностроении (шестерни и звездочки, диски муфт, различного рода рычаги, опорные катки и т.п.) и во многих других отраслях.

Химический состав.

В нем содержится: углерод (С)=3,3-3,5%, кремний (Si)=1,4-2,2%, марганец (Мn)=0,7-1,0%, фосфор (P)= не более 0,2%,сера (S)= не более 0,15%

Механические свойства высокопрочного чугуна предел прочности (временное сопротивление) у в ВЧ60 = 600 Мпа; условный предел текучести у 0,2 = 310-320 МПа; относительное удлинение (пластичность) д = 10-22 %; твердость ВЧ45 140-225, ВЧ50 НВ 153-245 НВ;

Твердость по Бринеллю HB= 170-241*10-1 МПа, ?в= 196 МПа

8.Приспособления применяемые при ремонте

Наплавки в среде углекислого газа заключается в том, что электродная проволока из кассеты непрерывно подается в зону сварки как показано на рисунке. Ток к электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки. При наплавке металл электрода и детали перемешивается. В зону горения дуги под давлением 0,05...0,2 МПа по трубке подается углекислый газ, который, вытесняя воздух, защищает расплавленный металл от вредного действия кислорода и азота воздуха.

Схема наплавки в среде углекислого газа:1 — мундштук; 2 — электродная проволока; 3 — горелка; 4 — наконечник; 5 — сопло горелки; 6 — электрическая дуга; 7 — сварочная ванна; 8 — наплавленный металл; 9 — наплавляемая деталь.

Схема установки для дуговой наплавки в углекислом газе: 1 — кассета с проволокой; 2 — наплавочный аппарат; 3 — расходомер; 4 — редуктор; 5 — осушитель; 6 — подогреватель; 7 — баллон с углекислым газом; 8 — деталь.

Наплавку в среде углекислого газа производят на постоянном токе обратной полярности. Тип и марку электрода выбирают в зависимости от материала восстанавливаемой детали и требуемых физико-механических свойств наплавленного металла. Скорость подачи проволоки зависит от силы тока, устанавливаемой с таким расчетом, чтобы в процессе наплавки не было коротких замыканий и обрывов дуга. Скорость наплавки зависит от толщины наплавляемого металла и качества формирования наплавленного слоя. Наплавку валиков осуществляют с шагом 2,5...3,5 мм. Каждый последующий валик должен перекрывать предыдущий не менее чем на 1/3 его ширины.

Твердость наплавленного металла в зависимости от марки и типа электродной проволоки 200...300 НВ.

Расход углекислого газа зависит от диаметра электродной проволоки. На расход газа оказывают также влияние скорость наплавки, конфигурация изделия и наличие движения воздуха.

После того как нанесли, определённыйслой металла начинаем наружную обработку поверхности с помощью шлифования.

После установки заготовки расставляют упоры для измерения направления движения стола. Упоры продольной подачи располагают так, чтобы круг при шлифовании не задевал за хомутик и не выходил из контакта с заготовкой. Установленные упоры нужно жестко закрепить. Чтобы установить взаимное расположение круга и заготовки, в центры устанавливают эталонную деталь. Левый торец ее используют как базу для установки шлифовальной бабки. При любой длине шлифуемой заготовки положение этого торца остается неизменным.

Перед пробным шлифованием вначале включают электродвигатель шлифовального круга, затем электродвигатель вращения заготовки. Потом подводят круг к заготовке до появления искры и вручную перемещают стол. Выполнив два-три прохода, включают автоматическую подачу и после пробного шлифования измеряют диаметры заготовки у обоих ее торцов. Если есть конусность, то выверяют положение стола, добиваясь цилиндричности обрабатываемой поверхности.

Токарно-винторезный станок предназначен для наружной и внутренней обработки, включая нарезание резьбы, единичных и малых групп деталей

Общий вид и размещение органов управления токарно-винторезного станка модели 16К20

1- станина, рукоятки управления: 2 - сблокированная управление, 3,5,6 - установки подачи или шага нарезаемой резьбы, 7, 12 - управления частотой вращения шпинделя, 10 - установки нормального и увеличенного шага резьбы и для нарезания многозаходных резьб, 11 — изменения направления нарезания резьбы (лево- или правозаходной), 17 - перемещения верхних салазок, 18 - фиксации пиноли, 20 - фиксации задней бабки, 21 - штурвал перемещения пиноли, 23 - включения ускоренных перемещений суппорта, 24 - включения и выключения гайки ходового винта, 25 - управления изменением направления вращения шпинделя и его остановкой, 26 - включения и выключения подачи, 28 - поперечного перемещения салазок, 29 - включения продольной автоматической подачи, 27 - кнопка включения и выключения главного электродвигателя, 31 - продольного перемещения салазок; Узлы станка: 1 - станина, 4 - коробка подач, 8 - кожух ременной передачи главного привода, 9 - передняя бабка с главным приводом, 13 - электрошкаф, 14 - экран, 15 - защитный щиток, 16 - верхние салазки, 19 - задняя бабка, 22 - суппорт продольного перемещения, 30 - фартук, 32 - ходовой винт, 33 - направляющие станины.

Круглошлифовальный станок - предназначен для обработки деталей шлифованием.

Общий вид универсального круглошлифовального станка мод. ЗУ131:

1 — станина, 2 — электрооборудование, 3 — передняя бабка, 4 — приспособление для внутреннего шлифования, 5 —кожух шлифовального круга, 6 — механизм подач шлифовальной бабки, 7 — шлифовальная бабка, 8 — задняя бабка, 9 — система гидропривода и смазки, 10 — система гидроуправления, 11 — шлифовальный круг, 12 — механизм ручного перемещения стола

Сварочный универсальный выпрямитель ВДУ-506. Является регулируемым тиристорным выпрямителем с жесткой или падающей внешней характеристикой. Отличием от версии ВДУ-506С является классическое построение и отсутствие комбинированной вольт-амперной характеристики в режиме полуавтоматической сварки. Работает в комплекте с полуавтоматом ПДГО-510-5, со стабилизацией скорости подачи сварочной проволоки и возможностью удаления подающего механизма от выпрямителя на расстояние до 30м, оптимален для цеховых условий при сварке на токах дуги до 450А (ПВ=100%).

Микрометр гладкий. Гладким микрометром называется средство для измерения наружных линейных размеров. Цена деления микрометра 0,01 мм.

1 - скоба; 2 - жесткая пятка; 3 - калибр (концевая мера) для установки микрометра на нуль; 4 - подвижная пятка (микровинт); 5 - стебель; 6 - микрометрическая головка; 7 - установочный колпачок; 8 - трещоточное устройство; 9 - тормозное приспособление.цена деления шкалы барабана, мм......0,01

Индикатором часового типа называетсяизмерительнаяголовка, т. е. средство измерений, имеющее механическую передачу, которая преобразует малые перемещения измерительного наконечника в большие перемещения стрелки, наблюдаемые по шкале циферблата.

а — общий вид; б — схема зубчатой передачи

По внешнему и внутреннему устройству индикатор этот похож на карманные часы, почему за ним и закрепилось такое название.

Конструктивно индикатор часового типа представляет собой измерительную головку с продольным перемещением измерительного наконечника. Основанием этого индикатора является корпус 13, внутри которого смонтирован преобразующий механизм — реечно-зубчатая передача. Через корпуспроходит измеритель — стержень-рейкас измерительным наконечником 4. На стержне 1 нарезана рейка движения которой передаются реечным (5) и передаточным (7) зубчатыми колесами, а также трубкой 9 на основную стрелку 8. Величина поворота стрелки 8 отсчитывается по круговой шкале — циферблату. Для установки индикатора против отметки «О» круговая шкала поворачивается ободком 2.

Круговая шкала индикатора часового типа состоит из 100 делений, цена каждого деления 0,01 мм. Это означает, что при перемещении измерительного наконечника на 0,01 мм стрелка индикатора передвинется на одно деление круговой шкалы.

10.Режущий инструмент

Токарный резец . Служит для снятия слоя металла или стружки для предания изделию заданной формы или размеров.

Резцы состоят из рабочей части (головки) и стержня (тела).

На рабочей части путем заточки образуются:

передняя поверхность, по которойсходит стружка;

задняя главная поверхность, обращенная к поверхности резания;

задняя вспомогательная поверхность, обращеннаяк обработанной поверхности.

Пересечением передней и задней главных поверхностей образуется главноережущеелезвие,выполняющееосновнуюработурезания.

Пересечением передней и задней вспомогательных поверхностей образуетсявспомогательное режущее лезвие, срезающее меньшую частьснимаемогослояматериала.

В зависимости от назначения, резцы имеют одно или два вспомогательных режущихлезвия и соответственно этому одну или две задние вспомогательныеповерхности.

Р6М5 - быстрорежущая сталь, инструментальная, легированная; Р6 - быстрорежущая 6% вольфрама, М5 - молибден 5%.

Резцы изготовленные из инструментальной стали, выдерживают нагрев до температуры 600˚С, не теряя своих режущих свойств. После термической обработки инструмент из быстрорежущих сталей имеет твердость HRC 62-63.

Так же для изготовления резцов применяются сплавы вольфрамокобальтовые (ВК) для обработки хрупких материалов: чугун, бронза, фарфора. Они состоят из карбидов вольфрама и кобальта, в сплавах содержится до 10% кобальта. Теплостойкость ВК 900˚С: ВК6, ВК8. ВК8- вольфрамовый твердый сплав, К8- кобальт 8%, остальное карбидо-вольфрамы. У сплавов титано-кобальтовых (ТК) твердость больше, чем у вольфрамокобальтовых. Так же теплостойкость у ТК 1000˚С, однако их прочность ниже (при одинаковом содержании кобальта).Сплавы Т15К6, Т5К10 используют для обработки материалов со сливной стружкой - сталей. Т15К6 -титано-кобальтовый сплав, Т15- титан 15%, К6- кобальт 6%, остальное карбидо-титаны.

Шлифовальный круг

Абразивный инструмент изготавливается из искусственных и природных абразивных материалов путем прессования массы, состоящей из шлифовального зерна (абразив — мелкие, твёрдые, острые частицы) и связки, с последующей термической и механической обработкой. Используются абразивы для механической обработки (в том числе для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них Действие абразивов сводится к удалению части материала с обрабатываемой поверхности. Абразивы обычно имеют кристаллическую структуру и в процессе работы изнашиваются таким образом, что от них откалываются мельчайшие частички, на месте которых появляются новые острые кромки (благодаря хрупкости). По размеру зёрен абразивы характеризуются шкалой от 4 (грубейший) до 1200 (тончайший).

Обработка поверхностей шлифовальными кругами обеспечивает шероховатость Ra 1,25-0,02 мкм.

Схемы круглого наружного шлифования:

а — шлифование с продольными рабочими ходами: 1 — шлифовальный круг; 2 — шлифуемая заготовка; б — глубинное шлифование; в — врезное шлифование; г — комбинированное шлифование; S np — продольная подача; S n — поперечная подача; t — глубина обработки

Устройства для установки и крепления шлифовальных кругов:

1— шпиндель; 2 — фланцы; 3 — шлифовальные круги; 4 — прокладки; 5 — гайки; 6, 7 — переходные фланцы; 8 — кольцевой паз; 9 — винты

11.Рабочее место автослесаря

Рабочее место представляет участок площади, соответствующим образом оборудованный и оснащенный для выполнения работы одним рабочим или бригадой рабочих. Оно должно быть обеспечено всем необходимым для бесперебойного выполнения производственного задания, а работы должны выполняться в строгом соответствии с регламентированной технологией.

Слесарь по ремонту автомобилей автотранспортного предприятия выполняет работы, связанные с обслуживанием и текущим ремонтом подвижного состава на специализированных постах в гаражных модулях.

Для выполнения технического обслуживания и текущего ремонта посты оборудуют осмотровыми устройствами, обеспечивающими доступ к автомобилю со всех сторон.

Организация рабочего места слесаря по ремонту автомобилей:

1 — стул подъемно-поворотный; 2 — верстак двухтумбовый; 3 — стол для мойки и сушки деталей; 4 — стеллаж-подставка; 5 — кран-балка, грузоподъемность 1 т

Осмотровые канавы по ширине подразделяются на:

— узкие (межколейные) (рис.20 а);

— широкие (рис. 20 в).

Они могут быть тупиковыми или прямоточными. С тупиковых канав автомобили съезжают задним ходом, с прямоточных — передним.

Длина канавы должна превышать длину автомобиля на 1,0—1,2 м, а глубина составляет 1,4—1,5 м для легковых и 1,2—1,3 м для грузовых автомобилей и автобусов. Ширина узкой канавы 0,9—1,1 м, широкой — 1,4—3,0 м.

Канавы имеют ступенчатые лестницы, с боков по кромке — направляющие реборды для колес автомобиля. В канавах оборудуют ниши со светильниками, которые могут использоваться для хранения инструмента. Стены канав облицовывают керамической или пластмассовой плиткой.

Подъемники предназначены для подъема автомобилей и облегчения доступа к ним снизу.

Подъемники могут быть:

Стационарные:

Гидравлические (одно- и двухплунжелные)

Электромеханические (двух-, трех- и четырехстоечные)

Передвижные:

Гидравлические домкраты

Подъемники с гидравлическим или механическим приводом, размещаемые в осмотровой канаве.

Инструмент и приспособления. Посты технического обслуживания в зависимости от назначения оборудуют необходимым комплектом приспособлений и инструментом.

Для выполнения разборно-сборочных и крепежных работ используют комплекты слесарно-монтажных инструментов (рис.21), динамометрические ключи и съемники.

В комплект слесарно-монтажного инструментавходят:

—гаечные двусторонние ключи;

—торцовые сменные головки;

—разводной ключ;

—гаечные накидные двусторонние ключи;

—слесарный молоток;

—бородок;

—пассатижи;

—отвертки;

—коловорот;

—специальные ключи (для шпилек, свечей зажигания и др.).

Набор инструментов для слесаря монтажника

При сборке ответственных резьбовых соединений (крепление головки блока цилиндров, шатунных крышек и т. п.) применяют динамометрический ключ позволяющий затягиватьгайки и болты с определенным усилием. Момент затяжки (в килограммометрах) определяют по специально установленной на ключе шкале (индикатору).

Динамометрический ключ:

1— головка; 2 — стрелка; 3 — шкала;4 — рукоятка; 5 — упругийстержень

Для вывертывания и завертывания шпилек применяют эксцентриковый ключ (рис.23) , имеющий ролик с накатанной поверхностью и закрепленный эксцентрично на оси ключа. Полую стойку надевают на шпильку, отводя ролик. При повороте ключа за вороток ось заклинивается и вращается вместе с ключом, обеспечивая вывертывание или завертывание шпильки.

Эксцентриковый ключ для шпилек:

1 — стойка; 2 — вороток; 3 — ось;

4 — ролик

При техническом обслуживании автомобилей применяют различные типы съемников, которые могут быть как универсальные, так и предназначенные для выполнения конкретной операции.

Съемники:

а — клапана; б — крыльчатки водного насоса; в — шестерни; 1 — скоба; 2 — винт.

1.Перед техническим обслуживанием или ремонтом машины на подъемнике(гидравлическом, электромеханическом) на пульте управления подъемником вывесить предупреждающий знак «Не трогать - под автомобилем работают люди!» Плунжер подъемника зафиксировать от самопроизвольного опускания упором (штангой).

2.Слить бензин, масло и воду при ремонте деталей и агрегатов, связанных с системами охлаждения и смазки. Не допускать расплескивания и разлива жидкостей.

Случайно пролитые жидкости следует засыпать песком или опилками, которые потом необходимо убрать с помощью совка и щетки.

3.Обеспечить безопасность работы под машиной:

Затормозить ручным тормозом;

Включить низшую передачу;

Выключить зажигание (подачу топлива);

Под колеса подложить упоры (башмаки).

4.При работах, связанных с проворачиванием коленчатого или карданного вала, дополнительно проверить выключение зажигания, подачу топлива (для дизельных автомобилей), поставить рычаг переключения передач в нейтральное положение, освободить рычаг ручного тормоза.

После выполнения необходимых работ затянуть ручной тормоз и вновь включить низшую передачу

5.При ремонте машины вне осмотровой канавы, эстакады или подъемника использовать лежаки или подстилки.

6. Влезать под машину и вылезать из-под нее только со стороны, противоположной проезду. Под машиной размещаться между колесами вдоль машины.

7.Перед снятием и установкой агрегатов и узлов (двигателей, рессор, задних и передних мостов и т.п.) разгрузить их от веса кузова путем поднятия кузова подъемным механизмом с последующей установкой козелков.

8.Разборку и сборку рессор производить с помощью специальных приспособлений. Проверять совпадение отверстия ушка рессоры и серьги только с помощью бородка или оправки. Запрещается такую проверку производить пальцами.

9.Снятие отдельных агрегатов и деталей (тормозных и клапанных пружин, барабанов, рессорных пальцев и т.п.), связанное с приложением значительных физических нагрузок или с неудобством в работе, производить с применением приспособлений (съемников), обеспечивающих безопасность работ.

10.Перед снятием колес убедиться в надежной установке машины на козелках и в наличии упоров под неснятыми колесами.

11. Перед демонтажем шины полностью выпустить воздух из камеры колеса.

12.Демонтаж и монтаж шин должны выполняться в шиномонтажном отделении с применением для этих работ специального оборудования и инструмента с применением ограждений, обеспечивающих безопасность.

13.Перед сборкой колеса проверить состояние съемных фланцев обода и стопорного кольца. Фланцы обода и стопорные кольца должны быть очищены от ржавчины, не иметь вмятин, трещин, заусенцев. Диски колес, стопорные кольца и съемные фланцы должны соответствовать размерам шин.

14.При монтаже шины следует вводить стопорное кольцо всей его внутренней поверхностью в выемку на диске колеса.

15.Накачивать шины воздухом необходимо в специальных приспособлениях. Перед накачиванием убедиться, что запорное кольцо полностью лежит в замковом пазе. Допускается исправлять положение шины на диске постукиванием только после прекращения поступления воздуха.

16.Перед обслуживанием и ремонтом днища кузова легкового автомобиля на поворотном стенде необходимо укрепить на нем автомобиль, слить топливо из топливных баков и воду из системы охлаждения, закрыть плотно маслозаливную горловину двигателя и снять аккумуляторную батарею.

17.Промывать детали керосином необходимо в специально отведенном месте. Обдувать их сжатым воздухом в специальных закрытых шкафах, оборудованных вытяжной вентиляцией.

18.Четко согласовать свои действия при выполнении работы совместно с другими рабочими.

Техническое обслуживание и ремонт автомобиля при работающем двигателе,кромеслучаеврегулировкисистемпитанияи электрооборудования и опробования тормозов;

Производить ремонтные работы на автомобиле, вывешенном только на одних подъемных механизмах, без подставок;

Работать под автомобилем без лежаков или подстилок, лежа на земле или полу;

Применять случайные предметы (доски, кирпичи и т. п.) в качестве подставок или тормозных упоров (башмаков);

Работатьсповрежденнымиилинеправильноустановленными упорами, а также устанавливать на упоры груженый кузов;

Выбивать при демонтаже диски колес кувалдой или молотком;

Во время накачивания шины осаживать стопорное кольцо молотком или кувалдой;

Подходить к открытому огню, курить или зажигать спички, если руки или спецодежда смочены бензином.

20.Перед испытанием и опробованием тормозов на стенде автомобиль закрепить цепью или тросом, исключающими его скатывание со стенда.

21.До пуска двигателя автомобиль затормозить, рычаг коробки передач поставить в нейтральное положение.

22.Пуск двигателя осуществлять с помощью стартера. Пуск двигателя при открытом капоте производить при отсутствии посторонних лиц на рабочем месте.

При обкатке двигателя на стенде касаться вращающихся частей;

Работа двигателя в закрытом невентилируемом помещении

Список литературы

Епифанов Л.И., Епифанов Е.А. Техническое обслуживание и ремонт автомобилей: Учебное пособие для студентов учреждения среднего профессионального образования. - М.: ФОРУМ: ИНФРА-М, 2003.- 280 с.: ил. - (Серия «Профессиональное образование»)

Карагодин В.И., Митрохин Н.Н. Ремонт атвомобилей и двигателей: Учеб. для студ. сред. проф. учеб. заведений. - М.: Мастерство; Высш. школа, 2001. - 496 с.

Козлов Ю.С. Материаловедение. Издательство «АТАР», 1999 - 180 с.

Кубышкин Ю.И., Маслов В.В., Сухов А.Т. ВАЗ-2110, -2111, -2112. Эксплуатация, обслуживание, ремонт, тюнинг. Иллюстрированное руководство. - М.: ЗАО «КЖИ «За рулем», 2004. - 280 с.: ил. - (Серия «Своими силами»).

Шестопалов С.К. Устройство, техническое обслуживание и ремонт легковых автомобилей: Учеб. для нач. проф. образования; Учеб. пособие для сред. проф. образования. - 2-е изд., стер. - М.: Издательский центр «Академия»; ПрофОбрИздат, 2002. - 544 с

Адаскин А.М. Материаловедение (металлообработка): Учебник для нач. проф. образования: Учеб. пособие для сред. проф. образования/ А. М. Адаскин, В. М. Зуев.- 3-е изд., стер.- М.: Издательский центр «Академия», 2004. - 240 с.

Макиенко Н.И. Общий курс слесарного дела: Учеб. для ПТУ. - 3-е изд., испр. - М.: Высш. шк., 1989. - 335 с.: ил.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw