Французы испытали ламинарное крыло. Основные геометрические и аэродинамические характеристики крыла конечного размаха Выбор профиля крыла для малых скоростей

Главная / Priora

Профили крыла планеров В6356b- самый известный и распространенный во всем мире профиль , «выигравший» большинство соревнований самого высокого ранга. Он действительно универсален и имеет неплохие перспективы на будущее. Данный профиль применяли одессит В.Чоп (чемпион мира 1975 и 1987 года) и эстонец А. Лепп (чемпион Европы 1988 и чемпион мира 1989 года). Если Чоп использовал этот профиль в чистом виде, то Лепп сильно модернизировал его в сторону увеличения кривизны профиля без изменения толщины. От редакции. Небольшое замечание по поводу «модернизации», которую провел А. Лепп. Изменение кривизны или формы средней линии дает столь выраженные изменения характеристик, что теперь можно говорить о совершенно новом профиле (созданном, правда, с использованием тех или иных готовых компонентов). Кроме того, нужно помнить, что нередко цифры в «названии» профиля обозначают его геометрические параметры. Это относится и к профилям Бенедека. В нашем случае цифровой ряд 6356 обозначает, что толщина профиля равна 6%, максимальная вогнутость располагается на 35% хорды от носика, и вогнутость профиля равна 6%. Здесь уместно заметить, что профили типа NACA шифруются аналогично, но у них на первом месте стоит не толщина профиля, а величина вогнутости. В любом случае понятно, что изменение формы средней линии неизбежно должно приводить и к замене цифрового «названия» профиля.

Thomann F4. Этот профиль долгое время был самым популярным в Европе и обеспечивал весьма высокие для той поры результаты. Он применялся с турбулизатором типа «зигзаг», располагаемом на расстоянии 5 мм от передней кромки и имевшим ширину 7 мм при толщине 1 мм с углом «зуба» 60°.

Ritz-7455G. Данный профиль создан известным американским планеристом, чемпионом мира 1959 года Д. Ритцем.

Ritz-7455G уже 20 лет как получил «путевку в жизнь» на моделях планеров российских спортсменов. Одним из первых его применил ленинградец Ю. Яблоков, на рубеже 80-х годов ставший первым из советских планеристов обладателем Кубка мира (он был также победителем Кубков и Чемпионатов СССР). Ведущие московские спортсмены С. Макаров и М. Кочкарев, являющиеся сегодня законодателями технической моды в классе F1A, как и чемпион мира 1997 года киевлянин В. Стамов, применяют этот профиль уже более 10 лет. Они слегка модернизировали его для улучшения технологии сборки крыльев на стапелях.

Купфер. В свое время отечественные планеристы создали ряд профилей , имевших несомненную перспективу. Особо стоит отметить разработку доктора технических наук М. Купфера. Его профиль в конце 50-х годов был продут в аэродинамической трубе и показал выдающиеся характеристики. Из-за малой относительной толщины он тогда не получил распространения. Сейчас создание жестких крыльев малой толщины не представляет большой проблемы. Поэтому, возможно, теперь профиль Купфера сможет занять должное место на моделях планеров.

Правильный подбор профиля для свободнолетающей авиамодели - важнейший фактор достижения хороших летных качеств крылатого аппарата. Исходя из многолетнего опыта работы кружка краевой станции юных техников, предлагаем для воспроизведения целый ряд испытанных и отлично зарекомендовавших себя сечений для спортивных планеров-парителей.

Вариант № 1 подходит для условий тихой безветренной погоды и для моделей площадью 32-34 дм2 при удлинении крыла 13-15. При силе ветра 3-5 м/с и удлинении крыла 11-13 рекомендуются профили № 2 и 3. Варианты № 4 и 5 специально предназначены для тренировочных аппаратов с малым удлинением или же для условий сильно порывистого ветра.

Для небольших планеров, имеющих несущую площадь 17-19 дм2 (школьного подкласса), хорошо подходят профили № 6-9. При этом вариант № 6 в основном применяется для учебно-тренировочных моделей, а остальные - для чисто спортивных. Стабилизаторы же всех планеров делаются по схемам №10-12.

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ

Genese №16 Clark-Y

Genese №16 Этот профиль был разработан специально для применения на авиамоделях при обтекании с малыми числами Рей-нольдса. Испытан сотрудниками редакции журнала на ряде авиамоделей (в частности, на модели самолета «Ностромо-35»). Обладает хорошими срывными характеристиками.

Позволяет сохранить небольшое значение посадочной скорости (приемлемое для пилота квалификации ниже средней) даже при удельной нагрузке на крыло 75-100 г/дм2. В целом не чувствителен к искажению формы, но жесткая обшивка лобика крыла все же предпочтительна. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах. Clark-Y

Без всякой натяжки можно назвать профилем всех времен и народов. Первые достоверные результаты продувки были получены в лаборатории LMAL-NACA в 1924 году. До сих пор считается одним из лучших для учебно-тренировочных моделей. При применении на планерах по совокупности данных почти не уступает современным ламинарным профилям. Не чувствителен к искажению формы при использовании мягкой обшивки. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах.

Имеет следующие характеристики: Су mах = 1,373, Cx min= 0,0106, См0=0,08, (Су/Сх)mах=22,4. На диаграмме нанесены кривые: поляра Су= f(Cx) с отметками углов атаки, кривая Су= f(α), кривая СмА= f(Cy), кривая Су/ Сх = f(α), кривая Сy= (1/πλ)Cy2.

ГРАФИК ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОФИЛЯ CLARK-Y

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ
Е-385 и Е-387

Профили крыла авиамоделей. Е-385 и Е-387 рекомендуются для планеров парящего типа. Профиль Е-387 (кстати, он наиболее популярен) при чуть меньших значениях подъемной силы имеет явно лучшие характеристики в зоне нулевой подъемной силы. Значит, планер, крылья которого оборудованы данным профилем, окажется, способен на полет с высокой скоростью при сохранении весьма высоких парящих качеств.

Е-385 больше подходит для чистокровных парителей, где проблема потенциальной быстроходности модели не так важна, как коэффициент мощности крыла. Имейте в виду, что для Е-385 СМО=-0,168, а для Е-387 Смо=-0,081 (практически в два раза меньше). Это означает, что балансировочные потери во втором случае будут меньше (можно закладывать в проект планера горизонтальное оперение уменьшенной эффективности).

Также более низкий уровень окажется и у крутильных нагрузок (этот фактор весьма важен при создании легких крыльев высокого удлинения). У упомянутых профилей отличаются и углы нулевой подъемной силы. Для Е-385 α0=-6,64°, а для Е-387 α0=-1,17°. Нижней границей допустимых чисел Рейнольдса для обоих профилей можно принять величину 100 000.

Достаточная относительная толщина профилей обеспечивает возможность постройки легких крыльев большого удлинения с традиционной силовой схемой. Хотя Е-385 и Е-387 относятся к ламиниризированным, на практике оказалось, что крылья моделей могут иметь широкую зону с мягкой обшивкой. Конечно, при этом лобик крыла шириной примерно в треть хорды должен иметь жесткую обшивку.

Кроме того, обводы этой части крыла желательно воспроизвести с максимальной точностью. На сегодняшний день в мире создано множество планеров, снабженных упомянутыми профилями. И существенной разницы между вариантами с полной жесткой обшивкой крыла и с частично мягкой не отмечалось нигде. Поэтому, если перед вами стоит проблема жесточайшей экономии веса модели, смело проектируйте крыло с пленочной обшивкой задней части.

ПРОФИЛЬ ДЛЯ СТАБИЛИЗАТОРА
HS3, NACA 0009, G-795

Профили для стабилизаторов HS3. В последнее время профилировка стабилизаторов стала весьма «стилизованной». Тем не менее, работы по поиску оптимальных решений не прекращаются. Так, можно вспомнить дипломную работу М. Хамма из института аэродинамики при техническом университете Штутгарта. Будущий инженер на рубеже 90-х годов разработал серию симметричных профилей HS1, HS2 и HS3.

Продувки показали, что при практически одинаковых координатах профилей HS2 и HS3 последний имеет уменьшенное сопротивление в диапазоне реальных летных углов атаки (отличие профилей только в том, что носик HS3 очень острый, совершенно без радиуса). При симметричной профилировке стабилизатора классическим решением можно признать выбор NACA 0009, а при плосковыпуклой профиль типа Clare-Y 8% или тот же G-795. Подборку профилей подготовил

(Источник журнал Моделизм спорт и хобби)

АВИАМОДЕЛЬНЫЙ ПРОФИЛЬ ЕБ-380

Несмотря на то, что практически все применяемые на авиамоделях современные профили имеют более чем «высокое происхождение» (создаются они настоящими учеными-аэродинамиками с привлечением сложных специализированных компьютерных программ и, как правило, потом проходят ряд испытаний в особых малотурбулентных аэродинамических трубах), изредка бывают исключения из этого правила.

Примером может служить профиль, полученный чехом Томашем Бартовским путем «скрещивания» двух весьма популярных профилей профессора Эп-плера - Е-387 и Е-374. К сожалению, в статье, опубликованной в чешском «Моделярже» в 1980, году не упоминалось, по какой методике шел поиск «золотой середины».

Однако было ясно, что Томаша не устраивала явная кривизна Е-387 и связанная с этим невозможность его применения на больших скоростях (при выходе на малые значения коэффициента подъемной силы Су для Е-387 характерен значительный рост коэффициента сопротивления Сх), а также недостаточная относительная толщина Е-374, не позволяющая изготавливать жесткие крылья большей длины, и слабый достигаемый им максимальный Су (что, в общем, характерно для таких профилей).

Новый профиль, названный автором ЕБ-380, имеет весьма важную технологическую особенность. На большей части образующая его нижняя полудужка совершенно ровная, что значительно упрощает создание несущих плоскостей с подобной профилировкой. Интересна дальнейшая история ЕБ-380. Сначала этот профиль был использован Бартовским на крыле планера с частично жесткой обшивкой, обтянутом материалом - аналогом нашей длинноволокнистой микалентной бумаги.

Результаты испытаний оказались, по крайней мере, ниже среднего. Естественно, Томаш после этого отказался от своего детища и строил модели, используя такие профили, как Фх60-126, Е-178, Е-193 и другие. Через некоторое время он все же вернулся к ЕБ-380 и рискнул еще раз испытать его на планере. Правда, теперь крыло имело цельнобальзовую обшивку с лакированной, отшлифованной и полированной поверхностью. Результаты полетов превзошли все ожидания.

По мнению Томаша, новый профиль был намного лучше, чем все ранее используемые им на моделях, и обладал к тому же очень широким диапазоном режимов. ЕБ-380 предлагался автором как весьма подходящий для планеров класса ФЗБ (в условиях восьмидесятых годов!). Рекомендовалось также при изготовлении крыльев строго соблюдать точность теоретических обводов и технологий, обеспечивающих высокое качество и гладкость поверхности.

Насколько было ясно из статьи в «Моделярже», поляра ЕБ-380 носила лишь ознакомительный характер и являлась плодом чисто умозрительных размышлений автора. Интересно отметить, что приведенные в чешском журнале изображения профиля не соответствовали помещенной тут же таблице координат, хотя и предназначались для прямого «перекалывания» без промежуточных построений (даны натурные профили с хордой 160, 180, 205, 230 и 250 мм). На изображениях отсутствовало поджатие верхней задней части полудужки, четко проявляющееся при точном построении.

Судя по всему, оно было спрямлено либо самим автором, либо художником, выполнявшим рисунки. Поэтому здесь правомерно вести речь только о модифицированном ЕБ-380, который в дальнейшем мы будем именовать ЕБ-380м. Длительное время о профиле Бартовского не было ничего слышно. И вдруг совсем недавно появился целый ряд успешных разработок метательных радиопланеров, крылья которых снабжены ЕБ-380м.

Спортсмены довольны этим профилем, хвалят его характеристики и особо - универсальность. Он позволяет летать как в режиме чистого тихоходного парения, так и в скоростном, без потери аэродинамических свойств. На кроссовых планерах ЕБ-380 не «прижился» даже в свое время (сейчас там совершенно иные профили), зато на «металках», которые завоевывают все большую популярность во всем мире, он взял свое.

Причем именно в нёрекомендованном автором исполнении - на крыльях с частичной и полной мягкой обшивкой, да еще и на весьма малых числах Рейнольдса. Последнее, возможно, оправдано довольно острой «турбулизирующей» передней частью профиля и дополнительной турбулизацией воздуха за счет сравнительно шероховатой бумажной обшивки. Если вы занимаетесь созданием «металок» или легких планеров-парителей, может, имеет смысл попробовать применить именно ЕБ-380 или ЕБ-380м? Подумайте...

Рис. 1. Точные обводы профиля ЕБ-380. (Хорда равна 100 мм.) Вверху показан профиль ЕБ-380м, приведенный на страницах чешского журнала «Моделярж» в качестве точных шаблонов профиля ЕБ-380.

za / wikipedia.org

Французская компания Onera совместно с итальянской Leonardo провела испытания гладкого крыла, оптимизированного для ламинарного потока. Как пишет Aviation Week , испытания состоялись в трансзвуковой аэродинамической трубе S1MA французской компании. В настоящее время специалисты анализируют данные, полученные во время испытаний, однако, согласно предварительным результатам, гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

Объемы авиационных перевозок увеличиваются с каждым годом. Для того, чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете. Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей.

Еще одним способом уменьшить потребление топлива является снижение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию самолетов, используя новые легкие материалы и покрытия. Согласно планам разработчиков, новое ламинарное крыло должно отличаться существенно меньшим лобовым сопротивлением по сравнению со стандартным крылом самолета. Такое крыло должно иметь гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей площади.


Ламинарное крыло в аэродинамической трубе (слева) и тепловизионное изображение ламинарного потока на его верхней плоскости

В аэродинамической трубе испытания проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени. В результате выяснилось, что на верхней плоскости крыла площадь покрытия ламинарным потоком составила 70 процентов, а на нижней 30 процентов.

Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов - для нижней. На части крыла обязательно должно присутствовать турбулентное течение, повышающее его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки - завихрители потока, разрушающие ламинарный поток.

Тем не менее, считается, что в гражданской авиации, самолеты которых как правило не выполняют полетов на критических углах атаки, ламинарное удлиненное крыло может быть успешно использовано. При стабильном полете с без резких изменений углов атаки гладкое крыло может существенно снизить лобовое сопротивление, а значит потребление топлива в полете. Когда именно новое крыло может появиться на серийных самолетах, пока неизвестно.

Сегодня активными работами в области исследования гладкого крыла, оптимизированного для ламинарного обтекания, шведская компания Saab и британская GKN. Первая исследует композитное крыло, в котором передняя кромка и верхняя плоскость выполнены единой деталью, с пристыковкой остальных элементов и механизации с минимальными зазорами. В свою очередь GKN исследует обычное крыло, элементы которого плотнее обычного подогнаны друг к другу. Испытания обоих крыльев начнутся в текущем году.

Между тем, в феврале прошлого года GKN занялась исследованиями в области красок, которые позволят снизить лобовое сопротивление самолетов. Благодаря новым покрытиям разработчики рассчитывают снизить лобовое сопротивление на 25 процентов в крейсерском полете. Свои свойства новые краски должны будут сохранять на протяжении пяти лет, такой срок является стандартным требованием для внешних покрытий самолетов.

При нанесении на корпус самолета новые краски должны будут скрывать дефекты поверхности, обеспечивая тем самым ламинарное обтекание воздухом аэродинамических поверхностей, в первую очередь передних кромок, нередко имеющих неоднородную поверхность.

Василий Сычёв

Ламинарный профиль

Ламинарный профиль

профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как, например, при отсосе пограничного слоя, охлаждении поверхности (см. Ламинаризация пограничного слоя). Исследования в полёте состояния пограничного слоя на прямом крыле дозвукового самолёта (1938) показали наличие значительных участков ламинарного пограничного слоя. В СССР (И. В. Остославский, Г. П. Свищёв, К. К. Федяевский) и за рубежом были разработаны и применены на ряде самолётов Л. п., форма которых позволяла получать сдвинутое назад положение точки перехода ламинарного пограничного слоя в турбулентный и за счёт этого снижать , а следовательно, и полное аэродинамическое сопротивление самолёта. Для этого форма профиля должна обеспечивать на его поверхности в области ожидаемого ламинарного слоя ускоренное течение с возможно большим градиентом скорости для повышения устойчивости ламинарного течения к возмущениям. Геометрически это достигается смешением назад положения максимальной толщины и вогнутости профиля (см. Кривизна профиля), увеличением относительной толщины профиля и некоторым уменьшением радиуса кривизны носка. При этом с целью предотвращения срыва потока нельзя допускать резкого снижения скорости в хвостовой, диффузорной, части профиля, что приводит к ограничениям на геометрию профиля (недопустимо, например, смещение максимальной толщины и вогнутости за середину профиля, а также чрезмерное увеличение его толщины и вогнутости).
Фактором, ограничивающим возможности естественной ламинаризации пограничного слоя, является стреловидность крыла по передней кромке. При угле стреловидности больше 20-25(°) наблюдается значительное уменьшение области ламинарного течения. Участки с естественной ламинаризацией могут наблюдаться на различных элементах самолёта (носок фюзеляжа, горизонтальные и вертикальные оперения и т. д.). , проведённые при дозвуковых скоростях на самолётах с прямыми крыльями и крыльями с углом стреловидности менее 20(°), скомпонованными из Л. п., подтвердили наличие протяжённых ламинарных участков (до 30-50% хорды). При этом критические Рейнольдса числа, определенные по длине ламинарного участка, достигали Re* (≈) 10-12)*106. Проведённые в середине 80-х гг. в СССР (ЦАГИ) и за рубежом расчётные и экспериментальные исследования при больших числах Рейнольдса показали возможность получения протяжённых (вплоть до середины хорды) ламинарных участков при околозвуковом обтекании профилей с ускорением потока в местной сверхзвуков зоне. При этом полёта должно быть ограниченным, не допускающим возникновения интенсивных скачков уплотнения и заметного волнового сопротивления. Применение сверхкритических профилей с ускорением потока в местной сверхзвуковой зоне позволяет снизить сопротивление при повышенных дозвуковых скоростях полёта как за счёт естественной ламинаризации, так и за счёт малого, по сравнению с обычными профилями, волнового сопротивления.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Ламинарный профиль" в других словарях:

    ламинарный профиль Энциклопедия «Авиация»

    ламинарный профиль - ламинарный профиль — профиль крыла, характеризующийся удалённым от носка положением точки перехода ламинарного течения в турбулентное при естественном обтекании, то есть без использования дополнительной энергии для затягивания перехода, как … Энциклопедия «Авиация»

    Bell P-63 «Kingcobra» - Bell P 63 «Kingcobra» Лётно технические характеристики Двигатель Авиационное артиллерийское оружие Авиационные средства поражения Классификаторы Факты Использование в иностранных ВВС Модификации Галерея … Военная энциклопедия

    HA 420 HondaJet Тип бизнес джет Разработчик Honda Aircraft Company … Википедия

    Проекция касательных напряжений, приложенных к обтекаемой поверхности тела, на направление его движения. С. т. есть составная часть сопротивления аэродинамического (СА) и обусловлено проявлением действия сил внутреннего трения (вязкости); при… … Энциклопедия техники Энциклопедия «Авиация»

    Уменьшение сопротивления шара с возрастанием скорости набегающего потока при Рейнольдса числах Re, близких к критическому значению Re.(Кризис сопротивления) 1,5*105. Явление было установлено в 1912 А. Г. Эйфелем, объяснено в 1914 Л. Прандтлем.… … Энциклопедия техники

Полная аэродинамическая сила и ее проекции

При расчете основных летно-технических характеристик самолета, а также его устойчивости и управляемости необходимо знать силы и моменты, действующие на самолет.

Аэродинамические силы, действующие на поверхность самолета (давление и трение), можно привести к главному вектору аэродинамических сил , приложенному в центре давления (рис. 1), и паре сил, момент которых равен главному моменту аэродинамических сил относительно центра масс летательного аппарата.

Рис. 1. Полная аэродинамическая сила и ее проекции в двумерном (плоском) случае

Аэродинамическую силу обычно задают проекциями на оси скоростной системы координат (ГОСТ 20058-80). При этом проекцию на ось , взятую с обратным знаком, называют силой лобового сопротивления , проекцию на ось - аэродинамической подъемной силой , проекцию на ось - аэродинамической боковой силой . Эти силы могут быть выражены через безразмерные коэффициенты лобового сопротивления , подъемной силы и боковой силы , соответственно:

; ; ,

где - скоростной напор, Н/м 2 ; - воздушная скорость, м/с; r - массовая плотность воздуха, кг/м 3 ; S - площадь крыла самолета, м 2 . К основным аэродинамическим характеристикам относят также аэродинамическое качество

.

Аэродинамические характеристики крыла , , зависят от геометри­ческих параметров профиля и крыла, ориентации крыла в потоке (угла атаки a и скольжения b), параметров подобия (чисел Рейнольдса Re и Маха ),высоты полета H , а также от других параметров. Числа Маха и Рейнольдса являются безразмерными величинами и определяются выражениями

где a – скорость звука, n - кинематический коэффициент вязкости воздуха в м 2 /с, – характерный размер (как правило полагают , где – средняя аэродинамическая хорда крыла).Для определения аэродинамических характеристик самолета иногда исполь­зуются более простые, приближенные методы. Самолет рассматривается как совокупность отдельных частей: крыла, фюзеляжа, оперения, гондол двигателей и т.д. Определяются силы и моменты, действующие на каждую из отдельных частей. При этом используются известные результаты аналитических, численных и экспериментальных исследований. Силы и моменты, действующие на самолет, находятся как сумма соответствующих сил и моментов, действующих на каждую из его частей, с учетом их взаимного влияния.



Согласно предлагаемой методике, расчет аэродинамических харак­теристик крыла производится, если заданы некоторые геометрические и аэродинамические характеристики профиля крыла.

Выбор профиля крыла

Основные геометрические характеристики профиля задаются следующими параметрами. Хордой профиля называется отрезок прямой, соединенной две наиболее удаленные точки профиля. Хорда делит профиль на две части: верхнюю и нижнюю. Наибольший перпендикулярный хорде отрезок, заключенный между верхним и нижним обводами профиля, называется толщиной профиля c (рис. 2). Линия, соединяющая середины отрезков, перпендикулярных хорде и заключенных между верхним и нижним обводами профиля, называется средней линией . Наибольший перпендикулярный хорде отрезок, заключенный между хордой и средней линией профиля, называется кривизной профиля f . Если , то профиль называется симметричным .

Рис. 2. Профиль крыла

b - хорда профиля; c - толщина профиля; f - кривизна профиля; - координата максимальной толщины; - координата максимальной кривизны

Толщину c и кривизну профиля f , а также координаты и , как правило измеряют в относительных единицах , , , или в процентах , , , .

Выбор профиля крыла связан с удовлетворением различных требований, предъявляемых к самолету (обеспечение требуемой дальности полета, высокой топливной эффективности,крейсерской скорости , обеспечение безопасных условий взлета и посадки и др.). Так, для легких самолетов с упрощенной механизацией крыла следует обращать особое внимание на обеспечение максимального значения коэффициента подъемной силы, особенно на режиме взлета и посадки. Как правило, такие самолеты имеют крыло с большим значением относительной толщины профиля % = 12 ¸ 15%.

Для дальних самолетов с высокой дозвуковой скоростью полета, у которых увеличение на взлетно-посадочных режимах достигается благодаря механизации крыла, упор делается на достижение лучших характеристик на крейсерском режиме, в частности, на обеспечение режимов .

Для нескоростных самолетов выбор профилей производится из серии стандартных (обычных) профилей NACA или ЦАГИ, которые при необходи­мости могут быть модифицированы на этапе эскизного проектирования самолета.

Так, профили NACA с четырехзначными обозначениями могут быть использованы на легких тренировочных самолетах, а именно для концевых сечений крыла и хвостового оперения. Например, профили NACA2412 (относительная толщина % = 12%, координата максимальной толщины % = 30%, относительная кривизна % = 2%, координата максимальной кривизны % = 40%) и NACA4412 ( % = 12%, % = 30%, % = 4%, % = 40%) имеют достаточно высокое значение и плавные срывные характеристики в районе критического угла атаки .

Пятизначные профили NACA (серии 230) обладают наибольшей подъемной силой из всех стандартных серий, но их срывные характеристики менее благоприятны.

Профили NACA с шестизначным обозначением ("ламинарные") имеют низкое профильное сопротивление в узком диапазоне значений коэф­фициента . Эти профили очень чувствительны к шероховатости поверхности, загрязнениям, наростам .

Классические (обычные) профили, используемые на самолетах с малы­ми дозвуковыми скоростями, отличаются достаточно большими местными возмущениями (разряжениями) на верхней поверхности и, соответственно, небольшими значениями критического числа Маха . Критическое число Маха является важным параметром, определяющим величину лобового сопротивления самолета (при > на поверхности летательного аппарата появляются области местных сверхзвуковых течений и дополнительное волновое сопротивление).

Активный поиск путей повышения крейсерской скорости полета (без увеличения сопротивления самолета) привел к необходимости изыскать спо­собы дальнейшего повышения по сравнению с классическими скорост­ными профилями. Таким способом повышения является уменьшение кривизны верхней поверхности, что приводит к снижению возмущений на значительной части верхней поверхности. При малой искривленности верхней поверхности сверхкритического профиля уменьшается доля создаваемой им подъемной силы. Для компенсации этого явления производится подрезка хвостового участка профиля путем плавного изгиба его вниз (эффект "закрылка"). В связи с этим, средняя линия суперкритических профилей имеет харак­терный S - образный вид, с отгибом вниз хвостового участка. Для суперкритических профилей, как правило, характерно наличие отрицательной кривизны в носовой части профиля. В частности, на авиасалоне МАКС 2007 в экспозиции ОАО ²Туполев² был представлен макет самолета ТУ-204-100СМ с усеченным крылом, что позволяет получить представление о геометрических характеристиках профиля в корневой части крыла. Из представленного ниже фото (рис. 3.) видно наличие у профиля ²брюшка² и достаточно плоской верхней части, характерных для суперкритических профилей. Сверх­критические профили по сравнению с обычными скоростными профилями позволяют повысить примерно на = 0,05 ¸ 0,12 или увеличить тол­щину на % = 2,5 ¸ 5%. Применение утолщенных профилей позволяет увели­чить удлинение lкрыла на = 2,5 ¸ 3 или уменьшить угол стреловид­ности c крыла примерно на = 5 ¸ 10° при сохранении значения .

Рис. 3. Профиль крыла самолета ТУ-204-100СМ

Использование сверхкритических профилей в компоновке стреловид­ных крыльев является одним из основных направлений совершенствования аэродинамики современных транспортных и пассажирских самолетов .

Следует отметить, что при несомненном преимуществе сверхкритичес­ких профилей, по сравнению с обычными, некоторыми недостатками их яв­ляются повышение значения коэффициента момента на пикирование и тонкая хвостовая часть профиля.

Основные геометрические и аэродинамические характеристики крыла конечного размаха

В течение последних 30 ¸ 40 лет основным типом крыла для дозвуковых магистральных самолетов являлось стреловидное (c = 30 ¸ 35°) крыло с удли­нением , выполненное с сужением h = 3 ¸ 4. Перспективные пас­сажирс­кие самолеты, представленные на авиасалоне ²МАКС - 2007² (Ту - 334, Sukhoy Superjet 100) имели удлинение . Прогресс в увеличении удлинения крыла достигнут, в основном, за счет использования композиционных материалов в конструкции крыла.

Рис. 4. Однопанельное крыло

Сечение крыла в плоскости симметрии называется корневым профилем , а его хорда - корневой ; на концах крыла, соответственно, концевой профиль и концевая хорда . Расстояние от одного концевого профиля до другого называется размахом крыла . Хорда профиля крыла может изменяться вдоль его размаха. Отношение корневой хорды к концевой называется сужением крыла h. Отношение называется удлинением крыла . Здесь S - площадь проекции крыла на плоскость, перпендикулярную плоскости симметрии крыла и содержащую корневую хорду. Если по ходу полета концы отклонены относительно корневого сечения, говорят о стреловидности крыла . На рис. 4 показан угол между перпендикуляром к плоскости симметрии и передней кромкой крыла определяющий стреловидность по передней кромке . Говорят также об угле стреловидности по задней кромке , но важнее всего - угол (или просто c) стреловидностипо линии фокусов , т.е. по линии, соединяющий фокусы профилей крыла вдоль его размаха. При нулевой стреловидности по линии фокусов у крыла с ненулевым сужением кромки крыла не перпендикулярны плоскости симметрии крыла. Тем не менее, принято считать его прямым, а не стреловидным крылом. Если концы крыла отклонены относительно корневого сечения назад, то говорят о положительной стреловидности , если вперед - об отрицательной . Если передняя и задняя кромки крыла не имеют изломов, то стреловидность не меняется вдоль размаха. В противном случае, стреловидность может изменять свое значение и даже знак.

Современные стреловидные крылья с углом стреловидности c= 35° дозвуковых магистральных самолетов, рассчи­танных на крейсерские скорости, соответствующие = 0,83 ¸ 0,85, имеют среднюю относи­тельную толщину крыла % = 10 ¸ 11%, а сверхкрити­ческие крылья с углом стреловидности c = 28 ¸ 30° (для перспективных самолетов) около % = 11 ¸ 12%. Распределение толщины по размаху крыла определяется из условий реализации заданного полезного объема и минимального волнового сопротивления. С целью реализации эффекта скольжения в бортовых сече­ниях стреловидных крыльев применяют профили с "более передним" расположением точки максимальной толщины ,по сравнению с остальной частью крыла.

Расположены не в одной плоскости, то крыло имеет геометрическую крутку (рис. 6), характеризующую углом j.

Рис. 6. Концевой и корневой профили крыла при наличии геометрической крутки

Исследования аэродинамических моделей самолетов показали, что применениесверхкритических профилей в сочетании с геометрической круткой позволяют обеспечить . В данной работе использует­ся приближенная методика определения аэродинамических характеристик крыла, основанная на использовании экспериментальных данных. Расчет аэродинамических коэффициентов и крыла проводится в несколько этапов. Исходными данными для расчета являются некоторые геометрические и аэродинамические характеристики профиля. Эти данные могут быть взяты, в частности, из атласа профилей.

По результатам расчета аэродинамических коэффициентов строится зависимость и поляра - зависимость . Типичный вид этих зависимостей для малых дозвуковых скоростей представлен, соответственно, на рис. 7 и рис. 8.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw