Состав резины и ее получение. Резина

Главная / Pajero Sport

Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола.

Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула

СН 2 =ССI-СН=СН 2 .

Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.)

По температуроустойчивости и морозостойкости (от -35 до -40°С) они уступают как НК, так и другим СК. Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков. (За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.).

СКН - бутадиен-нитрильный каучук - продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты;

СН 2 -СН=СН-СН 2 -СН 2 -СНСN-

В зависимости от состава каучук выпускают следующих марок: СКН-18, СКН-26, СКН-40. (Зарубежные марки: хайкар, пербунан, буна-N и др.). Присутствие в молекулах каучука группы СN сообщает ему полярные свойства.

Чем выше полярность каучука, тем выше его механические и химические свойства и тем ниже морозостойкость (например, для СКН-18 от -50 до -60°С, для, СКН-40 от -26 до -28°С). Вулканизируют СКН с помощью серы. Резины на основе СКН обладают высокой прочностью (в = 35 МПа), хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей.

Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130°С. Резины на основе СКН применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки, манжеты и т.п.).

Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

СН 2 -СН 2 -S 2 -S 2 -...

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол - хороший герметизирующий материал.

Механические свойства резины на основе тиокола невысокие. Эластичность резин сохраняется при температуре от -40 до -60°С. Теплостойкость не превышает 60-70°С. Тиоколы новых марок работают при температуре до 130°С.

Акрилатные каучуки - сополимеры эфиров акриловой (или метакриловой) кислоты с акрилонитрилом и другими полярными мономерами - можно отнести к маслобензостойким каучукам. Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ. Для получения высокопрочных резин вводят усиливающие наполнители. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Недостатками БАК являются малая эластичность, низкая морозостойкость, невысокая стойкость к воздействию; горячей воды и пара.

Теплостойкие резины получают на основе каучука СКТ.

СКТ - синтетический каучук теплостойкий, представляет собой кремнийорганическое (полисилоксановое) соединение с химической формулой

…- Si(СН 3) 2 - O - Si(СН 3) 2 -...

Каучук вулканизуется перекисями и требует введения усиливающих наполнителей (белая сажа). Присутствие в основной молекулярной цепи прочной силоксановой связи придает каучуку высокую теплостойкость. Так как СКТ слабополярен, он обладает хорошими диэлектрическими свойствами.

Диапазон рабочих температур СКТ составляет от -60 до 250°С. Низкая адгезия, присущая кремнийорганическим соединениям (вследствие их слабой полярности), делает СКТ водостойким и гидрофобным (например, применяется для защиты от обледенения).

В растворителях и маслах он набухает, имеет низкую механическую прочность, высокую газопроницаемость, плохо сопротивляется истиранию. При замене метильных групп (СН 3) другими радикалами получают другие виды силоксановых каучуков.

Каучук с винильной группой (СКТВ) устойчив к тепловому старению и обладает меньшей текучестью при сжатии, температура эксплуатации от -55 до 300°С. Вводя фенильную группу (С 6 Н 5), получают каучук (СКТФВ), обладающий повышенной морозостойкостью (от -80 до -100°С) и сопротивляемостью к действию радиации. Можно сочетать различные радикалы, обрамляющие силоксановую связь. Так, фенилвинилсилоксановый каучук имеет повышенные механические свойства.

Если ввести в боковые группы макромолекулы СКТ атомы Р или группу СМ, приобретается устойчивость к топливу и маслам. Введение в основную цепь атомов бора, фосфора дает возможность повысить теплостойкость резин до 350-400°С и увеличить их клеящую способность. Силоксановые резины сгорают при 600-700°С, а в течение нескольких секунд выдерживают 3000°С.

Морозостойкими являются резины на основе каучуков, имеющих низкие температуры стеклования. Например, резины на основе СКС-10 и СКД могут работать при температуре до -60°С; НК, СКБ, СКС-30, СКН - до -50°С, СКТ - ниже -75°С.

Светоозоностойкие резины вырабатывают на основе насыщенных каучуков - фторсодержащих (СКФ), этиленпропиленовых (СКЭП), бутилкаучука.

Фторсодержащие каучуки получают сополимеризацией ненасыщенных фторированных углеводородов (например, СF 2 =СFCl, СН 2 =СF 2 и др.). Отечественные фторкаучуки выпускают под марками СКФ-32, СКФ-26; зарубежные - кель-Ф и вайтон. Каучуки устойчивы к тепловому старению, воздействию масел, топлива, различных растворителей (даже при повышенных температурах), негорючи. Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная (до 300°С). Недостатками является малая стойкость к большинству тормозных жидкостей и низкая эластичность. Резины из фторкаучуков широко применяют в авто- и авиапромышленности.

СКЭП - сополимер этилена с пропиленом - представляет собой белую каучукообразную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства. Кроме СКЭП выпускают тройные сополимеры СКЭПТ (за рубежом близкие по свойствам каучуки - висталом и дутрал).

Резины на основе фторкаучуков и этиленпропилена стойки к действию сильных окислителей (HNO 3 , Н 2 О 2 и др.), применяются для уплотнительных изделий, диафрагм, гибких шлангов и т.д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.

Хлорсульфополиэтилен (ХСПЭ) является насыщенным полимером. Его вулканизация основана на взаимодействии с группами SО 2 Сl и Сl. Вулканизаты ХСПЭ имеют высокую прочность (в=1626 МПа), относительное удлинение =280 560%. Они обладают повышенным сопротивлением истиранию при нагреве, озоно-, масло- и бензостойки, хорошие диэлектрики.

Интервал рабочих температур от -60 до 215°С. Применяют эти резины как конструкционный и защитный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия, для защиты от воздействия -излучения).

Бутилкаучук (Б К) получают совместной полимеризацией изобутилена с небольшим количеством изопрена (2-3%).

В бутилкаучуке мало ненасыщенных связей, вследствие чего он обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук кристаллизующийся, что позволяет получать материал с высокой прочностью (хотя эластические свойства низкие). Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам, превосходя их по газо- и паронепроницаемости.

Бутилкаучук - химически стойкий материал. В связи с этим он в основном предназначен для работы в контакте с концентрированными кислотами и другими химикатами; кроме того, его применяют в шинном производстве (срок службы покрышек в 2 раза выше, чем покрышек из НК).

Износостойкие резины получают на основе полиуретановых каучуков СКУ.

Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10-20 раз выше, чем газопроницаемость НК. Рабочие температуры резин на его основе составляют от -30 до 130°С. На основе сложных полиэфиров вырабатывают каучуки СКУ-7, СКУ-8, СКУ-50; на основе простых полиэфиров - СКУ-ПФ, СКУ-ПФЛ.

Последние отличаются высокой морозостойкостью (для СКУ-ПФ - до -75°С) и гидролитической стойкостью. Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков -вулколлан, адипрен, джентан, урепан. Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб и желобов для транспортирования абразивных материалов, обуви и др. набухание которой в жидкости не превышает 1-4%. Для кремнийорганических жидкостей применимы неполярные резины на основе каучуков НК, СКМС-10 и др.

Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), и тиокола.

Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула

Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.) По температуроустойчивости и морозостойкости (от -35 до -40 °С) они уступают как так и другим Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков. (За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.).

СКН - бутадиеннитрильный каучук - продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты:

В зависимости от состава каучук выпускают следующих марок: (Зарубежные марки: хайкар, пербунан, буна-N и др.). Присутствие в молекулах каучука группы CN сообщает ему полярные свойства. Чем выше полярность каучука,

тем выше его механические и химические свойства и тем ниже морозостойкость (например, для от -50 до -60 °С, для СКН-40 от -26 до -28 °С). Вулканизируют с помощью серы. Резины на основе обладают высокой прочностью хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до Резины на основе применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки, манжеты и т.

Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем поэтому тиокол - хороший герметизирующий материал. Механические свойства резины на основе тиокола невысокие. Эластичность резин сохраняется при температуре от -40 до Теплостойкость не превышает Тиоколы новых марок работают при температуре до

Акрилатные каучуки - сополимеры эфиров акриловой (или метакриловой) кислоты с акрилонитрилом и другими полярными мономерами - можно отнести к маслобензостойким каучукам. Каучуки выпускают марок Для получения высокопрочных резин вводят усиливающие наполнители. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении. Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Недостатками являются малая эластичность, низкая морозостойкость, невысокая стойкость к воздействию горячей воды и пара.

Теплостойкие резины получают на основе каучука

Синтетический каучук теплостойкий, представляет собой кремнийорганическое (полисилоксановое) соединение с химической формулой

Каучук вулканизуется перекисями и требует введения усиливающих наполнителей (белая сажа). Присутствие в основной молекулярной цепи прочной силоксановой связи придает каучуку

высокую теплостойкость. Так как СКТ слабо полярен, он обладает хорошими диэлектрическими свойствами. Диапазон рабочих температур СКТ составляет от -60 до Низкая адгезия, присущая кремнийорганическим соединениям (вследствие их слабой полярности), делает СКТ водостойким и гидрофобным (например, применяется для защиты от обледенения). В растворителях и маслах он набухает, имеет низкую механическую прочность, высокую газопроницаемость, плохо сопротивляется истиранию. При замене метальных групп другими радикалами получают другие виды силоксановых каучуков. Каучук с винильной группой устойчив к тепловому старению и обладает меньшей текучестью при сжатии, температура эксплуатации от -55 до 300 °С. Вводя фенильную группу получают каучук обладающий повышенной морозостойкостью (от -80 до и сопротивляемостью к действию радиации. Можно сочетать различные радикалы, обрамляющие силоксановую связь. Так, фенилвинилсилоксановый каучук имеет повышенные механические свойства. Если ввести в боковые группы макромолекулы СКТ атомы или группу приобретается устойчивость к топливу и маслам. Введение в основную цепь атомов бора, фосфора дает возможность повысить теплостойкость резин до и увеличить их клеящую способность. Силоксановые резины сгорают при а в течение нескольких секунд выдерживают 3000 °С.

Морозостойкими являются резины на основе каучуков, имеющих низкие температуры стеклования. Например, резины на основе и могут работать при температуре до ниже

Светоозоностойкие резины вырабатывают на основе насыщенных каучуков - фторсодержащих (СКФ), этиленпропиленовых (СКЭП), бутилкаучука.

Фторсодержащие каучуки получают сополимер из ацией ненасыщенных фторированных углеводородов (например, . Отечественные фторкаучуки выпускают под марками зарубежные - кель-Ф и вайтон. Каучуки устойчивы к тепловому старению, воздействию масел, топлива, различных растворителей (даже при повышенных температурах), негорючи. Вулканизованные резины обладают высоким сопротивлением истиранию. Теплостойкость длительная (до ). Недостатками является малая стойкость к большинству тормозных жидкостей и низкая эластичность. Резины из фтор каучуков широко применяют в авто- и авиапромышленности.

СКЭП - сополимер этилена с пропиленом - представляет собой белую каучукообразную массу, которая обладает высокой прочностью и эластичностью, очень устойчива к тепловому старению, имеет хорошие диэлектрические свойства. Кроме СКЭП выпускают тройные сополимеры СКЭПТ (за рубежом близкие по свойствам каучуки - висталом и дутрал).

Резины на основе фторкаучуков и этиленпропилена стойки к действию сильных окислителей , применяются для уплотнительных изделий, диафрагм, гибких шлангов и т. д., не разрушаются при работе в атмосферных условиях в течение нескольких лет.

Хлорсульфополиэтилен является насыщенным полимером. Его вулканизация основана на взаимодействии с группами Вулканизаты имеют высокую прочность относительное удлинение Они обладают повышенным сопротивлением истиранию при нагреве, озоно-, масло- и бензостойки, хорошие диэлектрики. Интервал рабочих температур от -60 до Применяют эти резины как конструкционный и защитный материал (противокоррозионные, не обрастающие в морской воде водорослями и микроорганизмами покрытия, для защиты от воздействия у-излучения). I

Бутилкаучук (Б К) получают совместной полимеризацией изобутилена с небольшим количеством изопрена

В бутилкаучуке мало ненасыщенных связей, вследствие чего он обладает стойкостью к кислороду, озону и другим химическим реагентам. Каучук кристаллизующийся, что позволяет получать материал с высокой прочностью (хотя эластические свойства низкие). Каучук обладает высоким сопротивлением истиранию и высокими диэлектрическими характеристиками. По температуростойкости уступает другим резинам, превосходя их по газо- и паронепроницаемости.

Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала.

Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже.

Состав

  1. Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селен, для некоторых канчуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения - тиурам (тиурамовые резины). Ускорители процесса вулканизации: полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.
  2. Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука (применяются альдоль, неозон Д и др.). Физические противостарители (парафин, воск) образуют поверхностные защитные пленки, они применяются реже.
  3. Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей составляет 8-30 % массы каучука.
  4. Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа - кремнекислота, оксид цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины. Часто в состав резиновой смеси вводят регенерат - продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.
  5. Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Структура

Подавляющее большинство каучуков является непредельными, высокополимерными (карбоцепными) соединениями с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. (Некоторые каучуки получают на основе насыщенных линейных полимеров.) Молекулярная масса каучуков исчисляется в 400 000-450 000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул и является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация). По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет при определенных условиях переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучуков с серой в технике называется вулканизацией.

Изменение свойств

В зависимости от количества вводимой серы получается различная частота сетки полимера. При введении 1-5 % S образуется редкая сетка и резина получается высокоэластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при максимально возможном (примерно 30 %) насыщении каучука серой образуется твердый материал, называемый эбонитом.

При вулканизации изменяется молекулярная структура полимера (образуется пространственная сетка), что влечет за собой изменение его физико-механических свойств: резко возрастает прочность при растяжении и эластичность каучука, а пластичность почти полностью исчезает; увеличиваются твердость, сопротивление износу. Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую теплостойкость (НК размягчается при температуре 90 °С, резина работает при температуре свыше 100 °С).

На изменение свойств резины влияет взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления и температуры. Преобладание того или иного процесса сказывается на свойствах вулканизата. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи - С-С-, наименьшая прочность у полисульфидной связи - С-S-С.

Упрочнение каучука

Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.

По объему мирового потребления НК составляет 30 %, остальное СК, который известен 250 видов.

По назначению резины подразделяют на резины общего назначения и резины специального назначения (специальные).

Резина (от лат. resina – смола) (вулканизат), эластичный материал, образующийся в результате вулканизации натурального и синтетических каучуков. Представляет собой сетчатый эластомер – продукт поперечного сшивания молекул каучуков химическими связями.

Получение резины

Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей – вулканизующие агенты, ускорители и активаторы вулканизации, наполнители, противо-старители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации, модификаторы, красители, порообразователи, антипирены, душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономическими и другими соображениями.

Технология производства изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением специального сборочного оборудования и вулканизацию изделий в аппаратах периодического (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и литье под давлением, при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков. При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук, получают эбониты.

Свойства резины

Резину можно рассматривать как сшитую коллоидную систему, в которой каучук составляет дисперсионную среду, а наполнители – дисперсную фазу. Важнейшее свойство резины – высокая эластичность, т.е. способность к большим обратимым деформациям в широком интервале температур.

Резина сочетает в себе свойства твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).

Резина – сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука; cвойства могут существенно изменяться при комбинировании каучуков различных типов или их модификации.

Механические свойства вулканизованной резины характеризуются рядом показателей, важнейшие из которых определяют при испытаниях ее на растяжение и сжатие, для чего в соответствии с ГОСТ 270-75 используют те же методы и такого же типа машины, какие применяются для оценки прочности металлов.

Пределом прочности при растяжении (разрывной прочностью) называется напряжение, возникающее в резине к моменту разрыва образца. Численно предел прочности 52 равен частному от деления максимальной нагрузки Р, зафиксированной при разрушении образца, на площадь его поперечного сечения, измеренную до начала растяжения.

Относительным удлинением при разрыве е2 называется выраженное в процентах отношение прироста длины образца резины в момент разрыва к его первоначальной длине.

Остаточным удлинением при разрыве 02 называется выраженное в процентах отношение прироста длины разорванного образца к его первоначальной длине.

Совокупность относительного и остаточного удлинений характеризует эластичность резинового материала. Чем больше разность между этими показателями, тем лучше эластичность материала, которая должна соответствовать назначению детали.

При деформации сжатия разрушение образца из различных сортов монолитных (беспористых) резин наступает примерно при двукратном уменьшении его размера в направлении сжимающей нагрузки, или, иначе говоря, при относительном сжатии порядка 50 %.

Чрезвычайно важные эксплуатационные выводы вытекают из анализа способности резины обеспечивать остаточные деформации. В вулканизатах всех каучуков (кроме эбонита) происходит явление, внешне сходное с ползучестью металлов при повышенных температурах или с хладотекучестью термопластов. Сущность этого явления состоит в том, что в резине, находящейся в напряженном состоянии, возникают и накапливаются необратимые деформации. Чем длиннее срок пребывания в таком состоянии и выше действующая нагрузка, тем больше будут остаточные деформации, которые достигают при разрушающих напряжениях нескольких десятков процентов. Поэтому сильно де­формированные резиновые детали с течением времени безвозвратно изменяют свою форму и размеры, что особенно заметно на тонкостенных изделиях, листовых материалах и т.д. Например, длительно хранящиеся навалом чисто резиновые и даже армированные шланги приобретают сплющенную форму, а резкие перегибы, допускаемые при складывании прорезиненной ткани, очень быстро и настолько устойчиво на ней фиксируются, что устранить их в последующем невозможно.

Чтобы обеспечить на возможно больший срок высокую работоспособность резиновых деталей, необходимо при их хранении, а также при эксплуатации создавать такие условия, при которых бы возникающие в этих деталях напряжения и деформации были возможно меньшими.

Например, такие дорогие и ответственные по выполняемым функциям изделия, как автомобильные покрышки, не допускается хранить плашмя положенными друг на друга. Их хранят только на специальных стеллажах поставленными вертикально в один ряд по высоте и к тому же при периодической (через 2...3 мес.) смене места контакта протектора со стеллажом для сохранения профиля и размеров.

Правилами технической эксплуатации шин предписывается не допускать их перегрузки и поддерживать в них нормальное давление (не снижая давление в тех случаях, когда оно становится выше нормы за счет нагрева шин). Оба требования продиктованы не только заботой о сохранении формы и размеров шин, но и стремлением не снизить их долговечность, предотвратить чрезмерное тепловыделение в них и перерасход топлива.

(металлы, минералы, пластмассы и т. д.), указывается ее твердость. Твердостью называется способность материала сопротивляться проникновению в него постороннего твердого тела, вдавливаемого под действием определенной силы.

Наиболее широко для оценки твердости резины применяется твердомер ТМ-2, мерой твердости по которому служит глубина погружения притуплённой в форме усеченного конуса иглы, выраженная в условных делениях шкалы прибора. При испытании твердомер ТМ-2 надо прижимать к изделию с минимальным усилием, но достаточным для того, чтобы обе его нижние площадки плотно (без просветов) прилегали к поверхности резины. При этом следует иметь в виду, что толщина образца /г, к которому прижимается твердомер, должна быть не менее 6 мм.

С целью облегчения формования изделий из сырой резины ей придают путем специальной обработки - пластикации каучука - необходимую пластичность. При измерении твердости такой резины игла твердомера непрерывно погружается в испытуемый образец, в результате чего показание прибора убывает и через несколько минут становится близким кнулю. Из-за повышенной пластичности сырой резины игла оставляет на образце не исчезающую со временем лунку. В процессе вулканизации пластичность резины убывает и на конечном этапе практически полностью исчезает, а твердость и эластичность, непрерывно возрастающие по мере вступления в реакцию новых порций серы, достигают в готовом вулканизате определенных значений.

На изменении пластичности основан один из методов контроля степени вулканизации, как целых деталей, так и отдельных их участков, ремонтируемых с помощью сырой резины. Стабильное, укладывающееся в рамки технических требований показание твердомера, сочетающееся с тем, что его игла не оставляет заметного следа на вулканизате, свидетельствует о правильности выбранного режима вулканизации.

Оценка износостойкости (сопротивления истиранию) и стремление к ее повышению преимущественно касается резины, идущей на изготовление деталей, которые по условиям работы перемещаются путем скольжения или качения относительно других предметов и при этом подвергаются износу. Из резиновых изделий для автомобилей к этой категории, в первую очередь, относятся пневматические шины, которым приходится работать в исключительно тяжелых условиях, сочетающих в себе восприятие высоких ударных нагрузок в очень широком диапазоне температур, царапающее и абразивное воздействие полотна дороги и грунта, неблагоприятное влияние влаги, солнца, кислорода и т.д.

Экспериментальное определение износостойкости резин производится в соответствии с ГОСТ 426-77 на специальной установке, которая позволяет при нормированных условиях подвергать истиранию образец резины, прижимаемый к наждачной шкурке с давлением 32,5 кПа. Показатель износостойкости, называемый удельным показателем истирания, определяется потерей объема испытуемого образца, вычисленной по отношению к единице работы, затраченной на истирание. Для резин, идущих на изготовление протекторов автомобильных покрышек для легковых автомобилей, этот показатель должен составлять не более 0,08 мм3/Дж, а для грузовых - не более 0,14 мм3/Дж.

Применение резины

Для получения прорезиненных тканей берут льняную или бумажную ткань и резиновый клей, представляющий резиновую смесь, растворенную в бензине или бензоле. Клей тщательно и равномерно размазывают и впрессовывают в ткань; после просушки и испарения растворителя получают прорезиненую ткань. Для изготовления прокладочного материала, способного выдерживать высокие температуры, применяют паронит, представляющий резиновую смесь, в которую введено асбестовое волокно. Такую смесь смешивают с бензином, пропускают через вальцы и вулканизируют в виде листов толщиной от 0,2 до 6 мм.

Для получения резиновых трубок и профилей сырую резину пропускают через шприц-машину, где сильно разогретая (до 100-110°) смесь продавливается через профилирующую головку. В результате получают профиль, которую подвергают вулканизации.

Изготовление дюритовых рукавов происходит следующим образом: из каландрованной резины вырезают полосы и накладывают их на металлический дорн, наружный диаметр которого равен внутреннему диаметру рукава. Края полос смазывают резиновым клеем и прикатывают роликом, затем накладывают один или несколько парных слоев ткани и промазывают их резиновым клеем, а сверху накладывают слой резины. После этого собранный рукав подвергают вулканизации.

Автомобильные камеры изготовляют из резиновых труб, шприцованных или склеенных вдоль камеры. Существует два способа изготовления камер: формовый и дорновый. Дорновые камеры вулканизируют на металлических или изогнутых дорнах. Эти камеры имеют один или два поперечных стыка. После стыкования, камеры в месте стыка подвергают вулканизации. При формовом способе, камеры вулканизируют в индивидуальных вулканизаторах, снабженных автоматическим регулятором температуры. Чтобы избежать склеивания стенок, внутрь камеры вводят тальк.

Автомобильные покрышки собирают на специальных станках из нескольких слоев особой ткани (корд), покрытой резиновым слоем. Тканевый каркас, то есть скелет шины, тщательно прикатывают, а кромки слоев ткани заворачивают. Снаружи каркас покрывают в беговой части толстым слоем резины, называемым протектором, а на боковины накладывают более тонкий слой резины. Подготовленную таким образом шину подвергают вулканизации.

Каучук имеет огромное народнохозяйственное значение. Чаще всего его используют не в чистом виде, а в виде резины. Резиновые изделия применяют в технике для изоляции проводов, изготовления различных шин, в военной промышленности, в производстве промышленных товаров: обуви, искусственной кожи, прорезиненной одежды, медицинских изделий.

Резина – высокоэластичное, прочное соединение, но менее пластичное, чем каучук. Она представляет собой сложную многокомпонентную систему, состоящую из полимерной основы (каучука) и различных добавок. Наиболее крупными потребителями резиновых технических изделий являются автомобильная промышленность и сельскохозяйственное машиностроение. Степень насыщенности резиновыми изделиями – один из основных признаков совершенства,

надёжности и комфортабельности массовых видов машиностроительной продукции. В составе механизмов и агрегатов современных автомобиля и трактора имеются сотни наименований и до тысячи штук резиновых деталей, причём одновременно с увеличением производства машин возрастает их резиноёмкость. Я остановлюсь на обувных товарах, выпускаемых на основе резины.

Обувные резины – это обширная группа искусственных материалов для низа обуви. Процесс производства этих резин состоит из следующих операций:

1) Подготовка материалов включает сушку, измельчение и просеивание исходных материалов, а также проверку их качества. Каучук распаривают, измельчают, перетирают. В результате повышается пластичность каучука и однородность резиновой смеси.

2) Приготовление резиновой смеси состоит в смешивании всех компонентов наполнителей, вулканизирующих веществ, ускорителей вулканизации, активаторов, мягчителей, противостарителей, красителей и других. Сначала к каучуку добавляют мягчители, а в последнюю очередь вулканизирующие вещества и порообразователи. Для предания полученной резиновой смеси формы плоских листов производят её листование на вальцах.

3) Каландрирование (формование) – метод производства сырых резиновых заготовок в виде непрерывной ленты нужной толщины и ширины. Каландрирование улучшает физико-химические свойства резиновой смеси, от него зависит расход резиновых смесей и качество изделий.

4) Штампование резиновых заготовок для получения отдельных деталей обуви, производят на штампах-прессах специальными резаками.

5) Вулканизация – завершающая операция производства резины. Резину выпускают в виде пластин, штампованных и формованных деталей: подошв, каблуков, подошв с каблуками и другое.

Резиновая промышленность - один из важнейших поставщиков комплектующих деталей и изделий для многих отраслей народного хозяйства. Р. - незаменимый материал в производстве шин, различных амортизаторов и уплотнителей; её применяют также для изготовления конвейерных лент, приводных ремней, рукавов, разнообразных изделий бытового назначения, в частности обуви. Из Р. изготовляют изоляцию кабелей, эластичные электропроводящие покрытия, протезы (например, искусственные клапаны сердца), детали наркозных аппаратов, катетеры, трубки для переливания крови и многое др. Объём мирового производства изделий из Р. в 1974 превысил 20 млн. т. Наиболее крупные потребители Р. - шинная промышленность (свыше 50%) и промышленность резинотехнических изделий (около 22 %).

), основу к-рых (обычно 20-60% по массе) составляют . Др. компоненты резиновых смесей-вулканизующие агенты, ускорители и (см. ), противо-старители, (). В состав смесей могут также входить регенерат (пластичный продукт резины, способный к повторной ), замедлители , модификаторы, порообра-зователи, душистые в-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор и состава определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией произ-ва, экономич. и др. соображениями (см. , ).

Технология произ-ва изделий из резины включает с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных , и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и изделий в аппаратах периодич. (прессы, котлы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая , благодаря к-рой им придается форма будущего изделия, закрепляемая в результате . Широко применяют формование в вулканизац. прессе и , при к-рых формование и изделий совмещают в одной операции. Перспективны использование порошкообразных и композиций и получение литьевых резин методами жидкого формования из композиций на основе . При смесей, содержащих 30-50% по массе S в расчете на , получают .

Свойства. Резину можно рассматривать как сшитую , в к-рой составляет , а наполнители-дисперсную фазу. Важнейшее св-во резины- высокая эластичность, т. е. способность к большим обратимым в широком интервале т-р (см. ).

Р езина сочетает в себе св-ва (упругость, стабильность формы), (аморфность, высокая деформируемость при малом объемном сжатии) и (повышение упругости вулканизац. сеток с ростом т-ры, энтропийная природа упругости).

Р езина-сравнительно мягкий, практически несжимаемый материал. Комплекс ее св-в определяется в первую очередь типом (см. табл. 1); cв-вa могут существенно изме няться при комбинировании разл. типов или их модификации.

Модуль упругости резин разл. типов при малых составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэф. Пауссона близок к 0,5. Упругие св-ва резины нелинейны и носят резко выраженный релаксац. характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности и т-ры. обратимого растяжения резины может достигать 500-1000%.

Ниж. предел температурного диапазона высокоэластичности резины обусловлен гл. обр. т-рой стеклования , а для кристаллизующихся зависит также от т-ры и скорости . Верх. температурный предел эксплуатации резины связан с термич. стойкостью и поперечных хим. связей, образующихся при . Ненаполненные резины на основе некристаллизующихся имеют низкую . Применение активных (высокодисперсных , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резин из кристаллизующихся . резины определяется содержанием в ней и , а также степенью . Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м. б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики резин: коэф. термич. расширения, уд. объемная , коэф. . Циклич. деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Резины характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляц. св-вами. Они и хорошие , хотя м. б. получены токопроводящие и магнитные резины.

Р езины незначительно поглощают и ограниченно набу-хают в орг. р-рителях. Степень определяется разницей параметров р-римости и р-рителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и , стойкостью к действию хим. агрессивных сред, света, . При длит. хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их мех. св-в, снижению и разрушению. Срок службы резин в зависимости от условий эксплуатации от неск. дней до неск. десятков лет.

. По назначению различают след. осн. группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию хим. агрессивных сред, диэлектрич., электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищ. и мед. назначения, для условий тропич. климата и др. (табл. 2); получают также пористые, или губчатые (см. ), цветные и прозрачные резины.

Применение. Резины широко используют в технике, с. х-ве, быту, медицине, стр-ве, спорте. Ассортимент насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Кор-нев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование , 3 изд., Л., 1987. Ф.Е. Куперман.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw