Дефектоскопы: основные виды. Дефектоскопия деталей машин Остальные виды и их принцип действия

Главная / Законодательство

ДефектоскопияДЕФЕКТОСКОПИЯ
Комплекс методов и средств неразрушающего
контроля материалов и изделий с целью обнаружения
дефектов.
Включает в себя:
разработку методов и аппаратуру
(дефектоскопы и др.);
составление методик контроля;
обработку показаний дефектоскопов.

Визуальный метод

ВИЗУАЛЬНЫЙ МЕТОД
Наиболее простым методом Д. является визуальный –
невооружённым глазом или с помощью
оптических приборов (например, лупы).
Визуальная Д. позволяет обнаруживать только поверхностные
дефекты (трещины и др.)

Рентгенодефектоскопия

РЕНТГЕНОДЕФЕКТОСКОПИЯ
Основана на поглощении рентгеновских лучей, которое зависит
от плотности среды и атомного номера элементов, образующих
материал среды.
Рис. 1.
Схема
рентгеновского
просвечивания:

Рентгенодефектоскопию применяют для определения раковин,
грубых трещин, в литых и сварных стальных изделиях
толщиной до 80 мм и в изделиях из лёгких сплавов до 250 мм.

Гамма-дефектоскопия

ГАММА-ДЕФЕКТОСКОПИЯ
Используется излучение гамма -лучей, испускаемых
искусственными радиоактивными изотопами металлов
(кобальта, иридия, европия и др.).
Источник излучения компактный, что позволяет обследовать
труднодоступные участки.

Кроме того, этим методом можно пользоваться, когда
применение рентгенодефектоскопии затруднено
(например, в полевых условиях). При работе с источниками
рентгеновского и гамма-излучений должна быть обеспечена
биологическая защита.

Магнитная Дефектоскопия

МАГНИТНАЯ ДЕФЕКТОСКОПИЯ
При намагничивании изделия порошок оседает в местах
расположения дефектов (метод магнитного порошка).
Методом магнитного порошка можно обнаружить трещины и
др. дефекты на глубине до 2 мм (рис. 2).
Рис. 2. Осадок магнитного порошка
(из суспензии) на невидимых глазом
закалочных трещинах в
стальной детали.

Магнитографический метод

МАГНИТОГРАФИЧЕСКИЙ МЕТОД
Эксплуатирует принцип магнитного рассеивания, для которого
используют намагничивание дефектов.
Магнитографическим методом контролируют главным образом
сварные швы трубопроводов толщиной до 20 мм и обнаруживают
трещины и непровар.

10. Ультразвуковая Дефектоскопия

УЛЬТРАЗВУКОВАЯ ДЕФЕКТОСКОПИЯ
Нарушения сплошности или однородности
среды влияют на распространение упругих волн в
изделии или на режим колебаний изделий.
Оборудование для настройки
Проведение контроля

11.

Практически невозможно производить достоверный
ультразвуковой контроль металлов с крупнозернистой
структурой, сварной шов (толщиной свыше 60 мм) из-за
большого рассеяния и сильного затухания ультразвука.

12. Метод магнитной памяти металла (новые направления в дефектоскопии)

МЕТОД МАГНИТНОЙ ПАМЯТИ МЕТАЛЛА
(НОВЫЕ НАПРАВЛЕНИЯ В ДЕФЕКТОСКОПИИ)
Основная задача метода МПМ – определение на объекте
контроля наиболее опасных участков и узлов,
характеризующихся зонами КН.

13.

Контроль методом МПМ решает одновременно две
практические задачи:
Выполняет оценку напряженно-деформированного состояния
сварного соединения.
Сокращает объем контроля традиционными методами УЗД,
рентген.

14. Электролитическая дефектоскопия

ЭЛЕКТРОЛИТИЧЕСКАЯ ДЕФЕКТОСКОПИЯ
Предназначен для контроля пористости, непрокрасов
и других нарушений сплошности защитных
диэлектрических покрытий металлических изделий.
Электролитически
е дефектоскоп
«Константа»

15. Применение Дефектоскопии

ПРИМЕНЕНИЕ ДЕФЕКТОСКОПИИ
Применение Д. в процессе производства и
эксплуатации изделий даёт большой эконом.
эффект за счёт сокращения времени,
затрачиваемого на обработку заготовок с
внутренними дефектами, экономии металла и др.
Кроме того, Д. играет значительную роль в
предотвращении разрушений конструкций,
способствуя увеличению их надёжности и
долговечности.

Дефектоскопия представляет собой современный способ диагностики, который позволяет выявить дефекты сварки и внутренних структур материалов без их разрушения. Этот способ диагностики используется при проверке качества швов сварки и для определения прочности металлических элементов. Поговорим поподробнее о различных методах дефектоскопии.

Для чего необходимо проводить такую диагностику

При выполнении сварочных работ не всегда удается обеспечить качественное соединение, что приводит к ухудшению прочности выполненных металлических элементов. Чтобы определить наличие таких дефектов используют специальное оборудование, способное выявлять отклонения структуры или же состав исследуемого материала. Дефектоскопия исследует физические свойства материалов, воздействуя на них инфракрасным и рентгеновским излучением, радиоволнами и ультразвуковыми колебаниями. Проводиться такое исследование может как визуально, так и с помощью специальных оптических приборов. Современное оборудование позволяет определять малейшее отклонения в физической структуре материала и выявлять даже микроскопические дефекты, которые способны повлиять на прочность соединения.

Дефектоскопия методы контроля

  • Фотографический — это распространенный способ определения дефектов состояния, когда выполняют съемку на пленку или цифровые носители, с последующим увеличением и определением наличия возможных дефектов. Следует сказать, что такой способ диагностики был распространён ранее, однако сегодня он постепенно вытесняется современными технологиями дефектоскопии.
  • Инфракрасная технология позволяет обнаружить дефекты сварки, которые невидимы при визуальном осмотре. Данная технология подразумевает использование специального инфракрасного излучения, что в свою очередь обеспечивает качественное определение микротрещин, вздутий и нарушений однородности.
  • Магнитный способ диагностики позволяет обнаруживать трещины путем выявления искажения магнитного поля. Подобная технология в последние годы получила широкое распространение, что объясняется ее эффективностью и простотой в использовании.
  • Ультразвуковая дефектоскопия позволяет определить наличие внутренних дефектов сварки, поэтому данные технологии широко используются в металлургическом производстве, машиностроение и строительстве.
  • Имперансный способ диагностики измеряет механическое сопротивление изделий, на основании чего производится выявление внутренних дефектов, отклонений химического состава, наличие пористости и нарушение однородности.

Эффективный метод ультразвуковой дефектоскопии

Следует сказать, что различные способы дефектоскопии имеют свои преимущества и недостатки. Важно правильно подобрать оптимальную технологию для каждого конкретного сварного соединения, что и позволит обеспечить максимальную точность определения имеющихся дефектов металлических сплавов и сварочных швов.

В последние годы наибольшее распространение получила ультразвуковая технология дефектоскопии, которая отличается универсальностью в использовании и позволяет точно определять имеющиеся неоднородности структуры. Отметим компактность оборудования для ультразвуковой дефектоскопии, простоту выполняемых работ и производительность такой диагностики. В настоящее время существуют специальные установки для ультразвуковой дефектоскопии, которые позволяют обнаруживать дефекты площадью в один квадратный миллиметр.

При помощи такого многофункционального современного оборудования можно определить не только имеющиеся повреждения и дефекты, но и контролировать толщину материала вплоть до нескольких миллиметров толщины. Это позволяет существенно расширить сферу использования такого оборудования для дефектоскопии, функционал которого в последние годы существенно расширился.

Использование такого исследования в производственном процессе и последующее наблюдение за эксплуатирующимися металлическими сварными изделиями позволяет обеспечить сокращение временных и денежных затрат на контроль качества изготовленных материалов и максимально точно определять состояние различных металлических деталей во время их эксплуатации.

Дефектоскопия – это область знаний, охватывающая теорию, методы и технические средства определения дефектов в материале контролируемых объектов, в частности в материале деталей машин и элементов металлоконструкций.

Дефектоскопия является составной частью диагностики технического состояния оборудования и его составных частей. Работы, связанные с выявлением дефектов в материале элементов оборудования, совмещаются с ремонтами и техническим обслуживанием или выполняются самостоятельно в период технического осмотра. Для выявления скрытых дефектов в конструкционных материалах используются различные методы неразрушающего контроля (дефектоскопии).

Известно, что дефекты в металле являются причиной изменения его физических характеристик: плотности, электропроводности, магнитной проницаемости, упругих и других свойств. Исследование этих характеристик и обнаружение с их помощью дефектов составляет физическую сущность методов неразрушающего контроля. Эти методы основаны на использовании проникающих излучений рентгеновских и гамма-лучей, магнитных и электромагнитных полей, колебаний, оптических спектров, явлений капиллярности и других.

Согласно ГОСТ 18353 методы неразрушающего контроля классифицируют по видам: акустические, магнитные, оптические, проникающими веществами, радиационные, радиоволновые, тепловые, электрические, электромагнитные. Каждый вид представляет собой условную группу методов, объединенных общностью физических характеристик.

Выбор вида дефектоскопии зависит от материала, конструкции и размеров деталей, характера выявляемых дефектов и условий дефектоскопии (в мастерских или на машине). Основными качественными показателями методов дефектоскопии являются чувствительность, разрешающая способность, достоверность результатов. Чувствительность – наименьшие размеры выявляемых дефектов; разрешающая способность – наименьшее расстояние между двумя соседними минимальными выявляемыми дефектами, измеряется в единицах длины или числом линий на 1 мм (мм –1). Достоверность результатов – вероятность пропуска дефектов или браковки годных деталей.

Акустические методы основаны на регистрации параметров упругих колебаний, возбужденных в исследуемом объекте. Эти методы широко применяются для контроля толщины деталей, сплошности (трещин, пористости, раковин и т.п.) и физико-механических свойств (зернистости, межкристаллитной коррозии, глубины закаленного слоя и др.) материала. Контроль выполняется на основании анализа характера распространения звуковых волн в материале детали (амплитуды, фазы, скорости, угла преломления, резонансных явлений). Метод пригоден для деталей, материал которых способен упруго сопротивляться деформациям сдвига (металлы, фарфор, оргстекло, некоторые пластмассы).

Акустические методы подразделяют на активные, основанные на излучении и приеме волн (теневой, резонансный, эхо-импульсный, велосимметрический методы), и пассивные, основанные на приеме колебаний волн исследуемого объекта (акустической эмиссии, виброшумодиагностические методы).

На ремонтных предприятиях нефтегазовой отрасли широко применяют ультразвуковую дефектоскопию. Сущность ее заключается в способности ультразвуковых колебаний приникать вглубь материала контролируемого изделия и отражаться от дефектов, являющихся нарушением сплошности материала.

Ультразвуковыми колебаниями принято называть упругие механические колебания с частотой более 20 кГц. Для излучения и приема ультразвуковых колебаний обычно используют пьезоэлектрические преобразователи-пластинки, изготовленные из монокристаллов кварца, сульфата лития и других материалов.

При внесении пьезоэлемента в электрическое поле в нем возникают упругие деформации, величина и направление которых зависят от параметров электрического поля. Указанный процесс является строго обратимым, т.е. если на пьезоэлемент действует переменное напряжение, изменяющееся по определенному закону, то и возникающее электрическое напряжение подчиняется этому же закону. Подобное явление называется пьезоэлектри-ческим эффектом.

Ультразвуковые колебания распространяются в виде узких направленных пучков. Они могут отражаться, преломляться и фокусироваться. При падении на границу раздела двух фаз, обладающих различным акустическим сопротивлением, в том числе нарушенной сплошности материала (трещин, раковин, расслоений и др.), часть ультразвуковых колебаний отражается, причем угол падения равен углу отражения, а остальная часть УЗК проходит во вторую среду, преломляясь в ней. Направленность УЗК и способность их отражаться от границы раздела двух сред используются для выявления в материалах трещин, расслоений, пор, газовых и шлаковых включений и измерения толщины деталей.

Ультразвуковая дефектоскопия осуществляется тремя основными методами: теневым, резонансным и эхо-методом.

Теневой метод основан на появлении за дефектом «звуковой тени» при прохождении ультразвука через деталь, помещенную между излучателем колебаний и приемным устройством. На рис. 7.8 изображена схема дефектоскопа, работающего по принципу теневого метода. Высокочастотные электрические колеба-


Рис. 7.8. Схема ультразвукового дефектоскопа, работающего по теневому методу:

а – без дефекта; б – с дефектом; 1 – генератор; 2 – преобразователь пьезоэлектрический; 3 – контролируемая деталь; 4 – ультразвуковые колебания; 5 – преобразователь приемный пьезоэлектрический; 6 – дефект; 7 – прибор регистрирующий

ния, вырабатываемые генератором 1 , подаются на пьезоэлектрический преобразователь 2 , в котором преобразуются в механические колебания ультразвуковой частоты. При плотном соприкосновении преобразователя 2 3 колебания (волны) 4 распространяются вглубь материала детали, достигают при отсутствии дефекта приемного пьезоэлектрического преобразователя 5 и регистрируются прибором 7 . Если на пути ультразвуковых колебаний встречается дефект 6 , то они отражаются от него и не попадают на приемный преобразователь 5 , т.е. за дефектом образуется «звуковая тень». При этом на регистрирующем приборе 7 отсутствуют показания, что свидетельствует о наличии дефекта.

Применяются также временной теневой и зеркально-теневой методы.

Временной теневой метод основан на запаздывании импульса, вызванного огибанием дефекта.

Зеркально-теневой метод основан на ослаблении сигнала, отраженного от противоположной поверхности изделия (донный эффект).

Резонансный метод основан на возникновении стоячих волн в материале контролируемой детали при совпадении частоты колебаний, создаваемых в детали внешним источником, с частотой собственных колебаний детали. Резонансным методом выявляют коррозионные раковины, расслоения в металле и другие повреждения.

Наибольшее применение для контроля материала деталей получил импульсный эхо-метод , основанный на принципе посылки в материал контролируемой детали ультразвуковых колебаний и приеме отраженных волн.


На рис. 7.9 приведена блок-схема импульсного эхо-дефек-тоскопа. Импульсы электромагнитных колебаний определен- ной частоты, вырабатываемые импульсным генератором 6 , поступают на пьезоэлектрический преобразователь 3 искательной головки, который под их действием деформируется и излучает упругие механические колебания ультразвуковой частоты. При соприкосновении пьезоэлектрического преобразователя 3 с поверхностью контролируемой детали 1 через слой контактной смазки ультразвуковые колебания распространяются внутрь материала детали и, достигнув противоположной стороны детали или дефекта 8 , отражаются от них. Отраженные импульсы поступают на приемный пьезоэлектрический преобразователь 2 , находящийся в той же искательной головке, где вновь преобразуются в электрические сигналы, которые, пройдя через усилитель 4 , поступают на электронно-лучевую трубку 5 . Одновременно с пуском импульсного генератора 6 включается генератор основной развертки 7 , который предназначен для получения на экране электронно-лучевой трубки горизонтальной развертки луча во времени.


Таким образом, на экране электронно-лучевой трубки фиксируются колебания основной развертки, слившиеся в одну сплошную горизонтальную линию, и пики эхо-сигналов – от поверхности входа в исследуемый материал (начальный импульс), от дефекта и от противоположной поверхности детали (донный импульс). Расстояния l 1 и l 2 , на которых расположены импульс дефекта и донный импульс по отношению к начальному импульсу соответствуют глубине залегания дефекта и толщине изделия. По амплитуде эхо-сигнала, отраженного от дефекта, судят о размере дефекта.

Окончательное заключение о координатах, форме и размерах дефекта, например, трещины, дается после его прозвучивания по нормали к поверхностям детали и под различными углами к ним (рис. 7.10). Амплитуда эхо-сигнала будет наибольшей, когда импульсы ультразвуковых колебаний направлены по нормали к поверхности дефекта (поз. а ). По мере увеличения угла a между нормалью к поверхности дефекта и направлением импульсов ультразвуковых колебаний амплитуда эхо-сигнала уменьшается (поз. b ) и примет нулевое значение, когда направление импульсов и трещины совпадут (поз. с ). Если отражающая поверхность дефекта достаточно велика, то по форме огибающей эхо-сигнала, наблюдаемого на экране электронно-лучевой трубки, можно судить о расположении трещины в материале.

Искательные головки (рис. 7.11) разделяют на три типа: прямые, наклонные и раздельно-совмещенные. Первые предназначены для ввода в изделие продольных звуковых волн, перпендикулярных к поверхности изделия, вторые – для ввода в изделие комбинаций УЗК с преобладанием (в зависимости от поставленной цели) поверхностных, продольных или поперечных волн и третьи – для ввода пучка продольных волн под определенным углом к плоскости, перпендикулярной к поверхности детали.

Тип волны зависит от угла ввода, который может изменяться. Применение таких головок дает возможность обнаруживать не только внутренние дефекты, но и наружные, например, усталостные трещины различного характера.

Основным элементом всех искательных головок служит пье-зопластина. Ее толщина равна половине длины волны излучаемых ультразвуковых колебаний.

Перед выполнением дефектоскопии поверхности детали, по которым производится контроль, должны быть очищены от загрязнений. Чтобы обеспечить надежный акустический контакт искательной головки с поверхностью детали без воздушных промежутков, на поверхность детали, контактирующую с искательной головкой, наносят слой масла. Чем больше криволинейность поверхности и выше температура, тем более вязкие масла следует применять в качестве контактной жидкости.


Дефектоскопию цилиндрических и конических, наружных и внутренних резьб бурильных и эксплуатационных труб и


Современные ультразвуковые дефектоскопы обладают высокой чувствительностью и точностью до 2 %.

К основным недостаткам ультразвуковых методов относятся необходимость достаточно высокой чистоты поверхности деталей и существенная зависимость качества контроля от квалификации оператора-дефектоскописта.

Магнитные методы основаны на регистрации магнитных полей рассеивания над дефектами или магнитных свойств контролируемого объекта. Их применяют для обнаружения поверхностных и подповерхностных дефектов в деталях различной формы, изготовленных из ферромагнитных материалов.


Магнитный поток, встречая на своем пути дефект с низкой магнитной проницаемостью по сравнению с ферромагнитным материалом детали, огибает его. Часть магнитных силовых линий выходит за пределы детали (рис. 7.15), образуя поле рассеива-


ния. Наличие последнего, а следовательно и дефекта, обнаруживают различными методами (магнитопорошковый, магнитографический и феррозондовый).

При магнитопорошковом способе для обнаружения магнитного потока рассеивания используют магнитные порошки (сухой способ) или их суспензии (мокрый способ). Проявляющийся материал наносят на поверхность изделия. Под действием магнитного поля рассеивания частицы порошка концентрируются около дефекта. Форма их скоплений соответствует очертанию дефекта (рис. 7.16).

Сущность магнитографического метода заключается в намагничивании изделия при одновременной записи магнитного поля на магнитную ленту, которой покрывают деталь, и последующей расшифровке полученной информации.

Для обнаружения дефектов феррозондовым способом применяют феррозондовые преобразователи.


При контроле деталей, поступающих в ремонт, наиболее распространен магнитопорошковый способ. Технология определения дефекта состоит из следующих операций: очистки детали от загрязнений; подготовки суспензии (мокрым способом); намагничивания контролируемой детали; осмотра поверхности детали с целью выявления мест, покрытых отложениями порошка; размагничивания детали.

Намагниченность деталей должна быть достаточной для создания около дефекта магнитного поля рассеивания, способного притягивать и удерживать частицы порошка. Через детали пропускают электрический ток или помещают их в магнитное поле соленоида. Различают три способа намагничивания: полюсное, циркулярное и комбинированное.

Полюсным намагничиванием создают продольное магнитное поле (вдоль детали). Деталь помещают между полюсами электромагнита (постоянного магнита) или в магнитное поле соленоида. Это намагничивание применяют для выявления дефектов, расположенных перпендикулярно к продольной оси детали или под углом к ней не более 20–25°.

Циркулярным намагничиванием создают магнитное поле, магнитные силовые линии которого расположены в виде замкнутых концентрических окружностей. Через деталь пропускают электрический ток. При необходимости обнаружения дефекта на внутренней цилиндрической поверхности ток пропускают через стержень или кабель из немагнитного материала (медь, латунь, алюминий), помещенный в отверстие детали. Это намагничивание служит для нахождения дефектов, расположенных вдоль продольной оси детали или под небольшим углом к ней.

Комбинированное намагничивание заключается в одновременном воздействии на деталь двух взаимно перпендикулярных магнитных полей. В результате их сложения образуется результирующее магнитное поле, величина и направление которого зависят от вектора магнитной напряженности каждого из слагаемых. Для получения комбинированного магнитного поля обычно через деталь пропускают электрический ток, создавая в ней циркулярное магнитное поле, и одновременно помещают в соленоид (или электромагнит), создавая продольное магнитное поле.

Магнитные силовые линии результирующего поля направлены по винтовым линиям к поверхности изделия, что позволяет обнаруживать дефекты разной направленности.

Вихретоковые методы основаны на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте.

Контроль методами вихревых токов базируется на зависимостях параметров (амплитуды, фазы, переходных характеристик и др.) вихревых токов, возбуждаемых в детали, от ее формы, размеров, сплошности и физико-механических свойств материала. Возбудителями вихревых токов могут служить переменное поле тока в проводе, движущиеся магниты, волны радиоизлучения. Для контроля деталь или ее часть помешается в переменный магнитный поток F 0 напряженностью Н 0 (рис. 7.17). Под действием магнитного потока в детали возбуждаются вихревые токи плотностью d, создающие вторичный встречный магнитный поток F в напряженностью Н в. Исследуя параметры потока F в при известных параметрах первичного потока F 0 , можно судить о качественных показателях деталей.

Методы вихревых токов позволяют обнаруживать поверхностные дефекты, в том числе под слоем металлических и неметаллических покрытий, контролировать размеры покрытий и деталей (диаметры шаров, труб, проволоки, толщину листов и др.), определять физико-механические свойства материалов (твердость, структуру, глубину азотирования и др.), измерять вибрации

Рис.7.17. Схема контроля методом вихревых токов

и перемещения деталей в процессе работы машины. Не всегда требуется непосредственный контакт датчика с исследуемой деталью, возможен контроль при одностороннем доступе (измерение толщины листов коробчатых конструкций и т.п.). Методы пригодны для контроля деталей из немагнитных металлов (по значению электропроводности). Важным преимуществом этих методов является автономность и портативность приборов, любой вид индикации, хорошая приспособленность к автоматизации. Контроль методами вихревых токов отличается хорошей точностью, а в случае выявления поверхностных трещин обеспечивает очень высокую чувствительность: минимальная ширина раскрытия трещины 0,0005–0,001 мм, глубина 0,15–0,2 мм. Для выявления трещин отечественной промышленностью выпускаются портативные дефектоскопы. Их чувствительность несколько ниже.

Недостатками рассматриваемых методов являются сравнительная сложность оборудования, необходимость в высокой квалификации персонала для обслуживания, использования и анализа результатов контроля. Приборы контроля, выпускаемые промышленностью, являются узкоспециализированными по видам контроля и материалам, что сдерживает их широкое применение.


Дефектоскопия деталей радиационными методами


Дефектоскопия деталей радиационными методами основана на регистрации ослабления интенсивности радиоактивного излучения при прохождении через контролируемый объект. Схема просвечивания детали радиационными лучами представлена на рис. 7.18. Наиболее часто применяются рентгеновский и g-контроль деталей и сварных швов. Промышленностью выпускаются как передвижные рентгеновские аппараты для работы в условиях мастерских, так и портативные для работы в полевых условиях. Для работы вблизи взрыво- и пожароопасных объектов, при отсутствии на месте работ электроэнергии или при ограниченном доступе к объекту контроля (например, при работе на машинах) вместо рентгеновских используются гамма-дефектоскопы. Некоторые дефектоскопы снабжаются шлангом-ампулопроводом для подачи источника излучения из радиационной головки в труднодоступные места на расстояние до 12 м.

Регистрация результатов радиационного контроля осуществляется визуально (изображение на экранах, в том числе стереоскопическое изображение) в виде электрических сигналов, фиксацией на фотопленке или обычной бумаге (ксерорадио-графия).

Достоинства радиационных методов – высокое качество контроля, особенно литья, сварных швов, состояния закрытых полостей элементов машин; возможность документального подтверждения результатов контроля, не требующего дополнительной расшифровки. Существенными недостатками являются сложность аппаратуры и организации выполнения работ, связанной с обеспечением безопасного хранения и использования источников радиационного излучения.

Радиоволновые методы основаны на регистрации изменения электромагнитных колебаний, взаимодействующих с контролируемым объектом. На практике получили распространение сверхвысокочастотные (СВЧ) методы в диапазоне длин волн от 1 до 100 мм. Взаимодействие радиоволн с объектом оценивают по характеру поглощения, дифракции, отражения, преломления волны, интерференционным процессам, резонансным эффектам. Эти методы применяют для контроля качества и геометрических параметров изделий из пластмасс, стеклопластиков, термозащитных и теплоизоляционных материалов, а также для измерения вибрации.

Тепловые методы. В тепловых методах в качестве диагностируемого параметра используется тепловая энергия, распространяющаяся в объекте, излучаемая объектом, поглощаемая объектом. Температурное поле поверхности объекта является источником информации об особенностях процессов теплопередачи, которые, в свою очередь, зависят от наличия внутренних и наружных дефектов, охлаждения объекта или его части в результате истечения среды и т.п.

Различают пассивные и активные методы теплового контроля. При пассивном контроле анализ тепловых полей производят в процессе их естественного возникновения. При активном – нагрев производят внешним источником тепловой энергии.

Контроль температурного поля осуществляют с помощью термометров, термоиндикаторов, пирометров, радиометров, инфракрасных микроскопов, тепловизоров и других средств.

Тепловизионная аппаратура, получившая в настоящее время широкое применение в диагностике, основана на сканировании поверхности объекта лучом инфракрасного спектра, приеме, усилении и развертке отраженного луча. В технической диагностике приборы термовидения с дистанционным обследованием объекта применяют:

при контроле качества изоляции, футеровки;

при контроле напряженного состояния металла.

Оптические методы. Оптический неразрушающий контроль основан на анализе взаимодействия оптического излучения с объектом. Для получения информации используют явления интерференции, дифракции, поляризации, преломления, отражения, поглощения, рассеивания света, а также изменение характеристик самого объекта исследования в результате эффектов фотопроводимости, люминесценции, фотоупругости и других.

Оптическое излучение или свет – электромагнитное излучение с длиной волн от 10 –5 до 103 мкм, в котором принято вы-делять ультрафиолетовую (от 10 –3 до 0,38 мкм), видимую (от 0,38 до 0,78 мкм) и инфракрасную (от 0,78 до 103 мкм) области спектра.

К числу дефектов, обнаруживаемых оптическими методами, относятся нарушения сплошности, расслоения, поры, трещины, включения инородных тел, изменения структуры материалов, коррозионные раковины, отклонение геометрической формы от заданной, а также внутренние напряжения в материале.

Применение переносных микроскопов дает возможность исследовать состояние и структуру поверхности материалов при увеличении. В сочетании со стробоскопом оптические методы позволяют исследовать подвижные детали.

Визуальная энтроскопия позволяет обнаружить дефекты на поверхностях объекта. Энтроскопы для внутреннего обследования труднодоступных мест объекта включают зонд из стекловолокна, с помощью которого исследователь может проникать внутрь объекта, и экран визуального наблюдения поверхности, а также принтер для видеозаписи исследуемой поверхности объекта. Применение оптических квантовых генераторов (лазеров) позволяет расширить границы традиционных оптических методов контроля и создать принципиально новые методы оптического контроля: голографические, акустооптические.

Капиллярный метод дефектоскопии основан на капиллярном проникновении индикаторных жидкостей в полости поверхностных и сквозных несплошностей объекта и регистрации образующихся индикаторных следов визуально или с помощью преобразователя (датчика).

Капиллярные методы применяют для обнаружения дефектов в деталях простой и сложной формы. Эти методы позволяют обнаруживать дефекты производственно-технологического и эксплуатационного происхождения – трещины шлифовочные, термические, усталостные, волосовины, закаты и др. В качестве проникающих веществ используют керосин, цветные, люминесцентные и радиоактивные жидкости, а также применяют метод избирательно фильтрующихся частиц.



Схема контроля деталей капиллярными методами приведена на рис. 7.19. Очищенная от грязи и специальных покрытий (краска, гальванические покрытия и др.) деталь 1 покрывается проникающей жидкостью 2 (рис. 7.19, а ). Ускорение заполнения жидкостью дефектов достигается в зависимости от ее свойств подогревом (жидкости или детали), созданием вакуума или компрессии, упругим деформированием или воздействием ультразвуком. Затем жидкость с поверхности удаляют протиркой ветошью, промывкой или продувкой (рис. 7.19, б ) и в зону контроля кистью или краскораспылителем наносят равномерный слой проявителя. Он поглощает оставшуюся в полостях дефектов жидкость, образуя индикаторный рисунок дефектов (рис. 7.19, в ), а также создает фон, улучшающий видимость рисунка.

При использовании цветных жидкостей индикаторный рисунок получается цветным, обычно красным, который хорошо выделяется на белом фоне проявителя – цветная дефектоскопия. При использовании люминесцирующих жидкостей индикаторный рисунок становится хорошо видимым под воздействием ультрафиолетовых лучей – люминесцентный метод. Контроль характера индикаторных рисунков осуществляется визуально-оптическим методом. При этом линии рисунка обнаруживаются сравнительно легко, так как они в десятки раз шире и контрастнее, чем дефекты.

Простейшим примером капиллярной дефектоскопии является керосиновая проба. Проникающей жидкостью служит керосин. Проявитель – мел в виде сухого порошка или водной суспензии. Керосин, просачиваясь в слой мела, вызывает его потемнение, которое обнаруживается при дневном свете.

Достоинствами капиллярной дефектоскопии являются универсальность в отношении формы и материалов деталей, хорошая наглядность результатов, простота и низкая стоимость материалов, высокая достоверность и хорошая чувствительность. В частности, минимальные размеры обнаруживаемых трещин составляют: ширина 0,001–0,002 мм, глубина 0,01–0,03 мм. Недостатки: возможность обнаружения только поверхностных дефектов, большая длительность процесса и трудоемкость (необходимость тщательной очистки), токсичность некоторых проникающих жидкостей, недостаточная надежность при отрицательных температурах.

В ремонтном производстве при использовании люминесцентного метода дефектоскопии применяют проникающие жидкости различного состава. Их наносят с помощью пульверизатора, окунанием в раствор илимягкой кистью. После выдержки детали в течение нескольких минут (не более 5) излишки жидкости удаляют, протирая поверхность ветошью, или промывают струей холодной воды под давлением 0,2 МПа с последующей сушкой.

Далее приступают к выявлению дефекта. Чаще всего применяют самопроявляющийся способ, при котором после пропитки и очистки деталь нагревают, что способствует быстрому выходу проникающей жидкости из дефекта и растеканию ее по краям трещины. Затем деталь помещают в дефектоскоп и облучают ультрафиолетовыми лучами. Источником ультрафиолетовых лучей служат ртутно-кварцевые лампы, свет от которых пропускают через светофильтры. Промышленность выпускает переносные и стационарные дефектоскопы.

Трещины в деталях можно обнаруживать с помощью керосиновой пробы. Керосин обладает хорошей смачивающей способностью, глубоко проникает в сквозные дефекты диаметром более 0,1 мм. При контроле качества сварных швов на одну из поверхностей изделия наносят керосин, а на противоположную – адсорбирующее покрытие (350–450 г суспензии молотого мела на 1 л воды). Наличие сквозной трещины определяют по желтым пятнам керосина на меловой обмазке.

Для выявления сквозных пор и трещин широко используются гидравлический и пневматический методы испытаний.

При гидравлическом методе внутреннюю полость изделия заполняют рабочей жидкостью (водой), герметизируют, создают насосом избыточное давление и выдерживают деталь некоторое время. Наличие дефекта устанавливают визуально по появлению капель воды или отпотеванию наружной поверхности.

Пневматический метод нахождения сквозных дефектов более чувствителен, чем гидравлический, так как воздух легче проходит через дефект, чем жидкость. Во внутреннюю полость деталей закачивают сжатый воздух, а наружную поверхность покрывают мыльным раствором или погружают деталь в воду. О наличии дефекта судят по выделению пузырьков воздуха. Давление воздуха, закачиваемого во внутренние полости, зависит от конструктивных особенностей деталей и обычно равно 0,05– 0,1 МПа.

Методы неразрушающего контроля не являются универсальными. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов. Выбор метода неразрушающего контроля определяется конкретными требованиями практики и зависит от материала, конструкции исследуемого объекта, состояния его поверхности, характеристики дефектов, подлежащих обнаружению, условий работы объекта, условий контроля и технико-экономических показателей.

Неразрушающие методы контроля Материал объекта Форма объекта Шероховатость Место расположения дефекта Условия контроля
Металл маг-нитный Металл не-магнитный Неметалл Простая (плита, лист, труба) Сложная R а > 5 мкм R а < 5 мкм На поверх-ностном слое В подповерх-ностном слое В глубине металла Под слоем защитного покрытия В условиях производст-ва В условиях эксплуата-ции При ремонте
Теневой Резонансный Эхо-импульсный Велосимметрический Акустической эмиссии Импедансный Свободных колебаний + + + – + + + + + + – + + + + + + + – + + + + + + + + + – – + – – – – + – + – – – + + + + + + + + + – + – + – – + + + + + – – + + + – + + + – – + – – – – + + + + + + + – – + + + + – – – + + – – –
Магнитопорошковый Магнитографический Феррозондовый + + + – – – – – – + + + – – – – + – + – + + + + + + + – – + – – – + + + + + – + + +
Оптический + + + + + + + + + + +
Цветной Люминесцентный Тенеисканием + + + + + + + + + + + + + + + – – + + + + + + – – – – – – – – – – + + + + – + + + +
Рентгенографический Гамма-графический + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Радиоволновый + + + + + + +
Тепловой + + + + + + + + +
Электрический + + + + + + + + +
Вихретоковый + + + + + + + + + + +

Похожая информация.


Дефектоскопия (от лат. defectus - недостаток, изъян и греч. skopeo - смотрю) - совокупность методов и средств неразрушающего контроля материалов и изделий для обнаружения в них различных дефектов. К последним относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения химического состава и размеров и др.

Важнейшие методы дефектоскопии - магнитной, электрической, вихретоковый, радиоволновой, тепловой, оптической, радиационной, аккустической, проникающих веществ. Наилучшие результаты достигаются при комплексном использовании разных методов.

Магнитной, ультразвуковой, а также рентгеновской дефектоскопией пользуются в тех случаях, когда при внешнем осмотре детали возникает подозрение о наличии скрытого порока и когда проверка предусмотрена правилами ремнта, в частности при дефектации аппаратов, подлежащих проверке по правилам Госгортехнадзора.

Магнитная дефектоскопия основана на регистрации в местах дефектов искажений магнитного поля. Для индикации используют: магнитный порошок или масляную суспензию Fe 3 O 4 , частицы которых оседают в местах расположения дефектов (магнитно-порошковый метод); магнитную ленту (связанную с устройством для магнитной записи), накладываемую на исследуемый участок и намагничиваемую в различной степени в дефектных и бездефектных зонах, что вызывает изменения импульсов тока, регистрируемые на экране осциллографа (магнитографичный метод); малогабаритные приборы, которые при передвижении по изделию в месте дефекта указывают на искажение магнитного поля (например, феррозондовый метрд). Магнитная дефектоскопия позволяет выявлять макродефекты (трещины, раковины, непровары, расслоения) с минимальными размерами > 0,1 мм на глубине до 10 мм в изделиях из ферри- и ферромагнитных материалов (в т. ч. в металлонаполненных пластиках, металлопластах и др.).

При электрической дефектоскопии фиксируют параметры электрического поля, взаимодействующего с объектом контроля. Наиболее распространен метод, позволяющий обнаруживать дефекты диэлектриков (алмаза, кварца, слюд, полистирола и др.) по изменению электрической емкости при введении в него объекта. С помощью термоэлектрического метода измеряют ЭДС, возникающую в замкнутом контуре при нагревании мест контакта двух разнородных материалов. Метод применяют для определения толщины защитных покрытий, оценки качества биметаллических материалов, сортировки изделий.



При электростатичном методе в поле помещают изделия из диэлектриков (фарфора, стекла, пластмасс) или металлов, покрытых диэлектриками. Изделия с помощью пульверизатора опыляют высокодисперсным порошком мела, частицы которого вследствие трения об эбонитовый наконечник пульверизатора имеют положительный заряд и из-за разницы в диэлектрической проницаемости неповрежденного и дефектного участков скапливаются у краев поверхностных трещин.

Электропотенциальный метод используют для определения глубины (>> 5 мм) трещин в электропроводных материалах по искажению электрического поля при обтекании дефекта током.

Электроискровой метод , основанный на возникновении разряда в местах нарушения сплошности, позволяет контролировать качество неэлектропроводных (лакокрасочных, эмалевых и др.) покрытий с максимальной толщиной 10 мм на металлических деталях. Напряжение между электродами щупа, устанавливаемого на покрытие, и поверхностью металла составляет порядка 40 кВ.

Вихретоковая дефектоскопия основана на изменении в местах дефектов поля вихревых токов, которые наводятся в электропроводных объектах электромагнитным полем (диапазон частот от 5 Гц до 10 МГц) индукционных катушек, питаемых переменным током. Используют для обнаружения поверхностных (трещин, раковин, волосовин глубиной > 0,1 мм) и подповерхностных (глубина 8-10 мм) дефектов, определения хим. состава и структурных неоднородностей материалов, измерения толщины покрытий и др.

При радиоволновой дефектоскопии происходит взаимодействие (преимущественно отражение) с объектом контроля радиоволн длиной 1-100мм, которые фиксируются специальными приборами - радиодефектоскопами. Метод позволяет выявлять дефекты с минимальными размерами от 0,01 до 0,5 длины волны, контролировать химический состав и структуру изделий, главным образом из неметаллических материалов. Особенно широкое распространение метод получил для бесконтактного контроля проводящих сред.



Тепловая дефектоскопия позволяет обнаруживать поверхностные и внутренние дефекты в изделиях из теплопроводных материалов анализом их температурных полей, возникающих под действием теплового излучения (длины волн от 0,1 мм до 0,76 мкм).

Наибольшее применение имеет так называемая пассивная дефектоскопия (внешний источник нагревания отсутствует), например, тепловизионный метод, основанный на сканировании поверхности объекта узким оптическим лучом, а также метод термокрасок, цвет которых зависит от температуры поверхности изделия. При активной дефектоскопии изделия нагревают плазмотроном, лампой накаливания, оптическим квантовым генератором и измеряют изменение прошедшего через объект или отраженного от него теплового излучения.

Оптическая дефектоскопия основана на взаимодействии исследуемых изделий со световым излучением (длины волн 0,4-0,76 мкм). Контроль может быть визуальным или с помощью светочувствительных приборов; минимальный размер выявляемых дефектов в первом случае составляет 0,1-0,2 мм, во втором - десятки мкм. С целью увеличения изображения дефекта используют проекторы и микроскопы. Шероховатость поверхности проверяют интерферометрами, в т.ч. голографическими, сравнивая волны когерентных пучков света, отраженных от контролируемой и эталонной поверхностей.

Для обнаружения поверхностных дефектов (размер > 0,1 мм) в труднодоступных местах применяют эндоскопы, позволяющие посредством специальные оптические системы и волоконной оптики передавать изображения на расстояния до нескольких метров.

Радиационная дефектоскопия предусматривает радиоактивное облучение объектов рентгеновскими, a-, b- и g-лучами, а также нейтронами. Источники излучений - рентгеновские аппараты, радиоактивные изотопы, линейные ускорители, бетатроны, микротроны. Радиационное изображение дефекта преобразуют в радиографичный снимок (радиография), электрический сигнал (радиометрия) или световое изображение на выходном экране радиационно-оптического преобразователя или прибора (радиационная интроскопия, радиоскопия). Развивается радиационная вычислительная томография, которая позволяет с помощью ЭВМ и сканирующих поверхностьсть объекта сфокусированных рентгеновских лучей получать его послойное изображение. Метод обеспечивает выявление дефектов с чувствительностью 1,0-1,5% (отношение протяженности дефекта в направлении просвечивания к толщине стенки детали) в литых изделиях и сварных соединениях.

Аккустическая дефектоскопия основана на изменениях под влиянием дефектов упругих колебаний (диапазон частот от 50 Гц до 50 МГц), возбужденных в металлических изделиях и диэлектриках. Различают ультразвуковые (эхо-метод, теневой и др.) и собственно акустические (импедансный, акустико-эмиссионный) методы. Наиболее распространены ультразвуковые методы. Среди них самый универсальный - эхо-метод анализа параметров акустических импульсов, отраженных от поверхностных и глубинных дефектов (площадь отражающей поверхности / 1 мм 2). При так называемом теневом методе о наличии дефекта судят по уменьшению амплитуды или изменению фазы ультразвуковых колебаний, огибающих дефект. Резонансный метод основан на определении собственных резонансных частот упругих колебаний при их возбуждении в изделии; применяют для обнаружения коррозионных повреждений или утонений стенок изделий с погрешностью около 1%. По изменению скорости распространения (велосимметричный метод) упругих волн в местах нарушения сплошности контролируют качество многослойных металлических конструкций. В основе импедансного метода лежит измерение механического сопротивления (импеданса) изделий преобразователем, сканирующим поверхность и возбуждающим в изделии упругие колебания звуковой частоты; этим методом выявляют дефекты (площадью / 15 мм 2) клеевых, паяных и других соединений, между тонкой обшивкой и элементами жесткости или заполнителями в многослойных конструкциях. Анализом спектра колебаний, возбужденных в изделии ударом, обнаруживают зоны нарушения соединений между элементами в многослойных клееных конструкциях значительной толщины (метод свободных колебаний).

Акустико-эмиссионный метод, основанный на контроле характеристик упругих волн, которые возникают в результате локальной перестройки структуры материала при образовании и развитии дефектов, позволяет определять их координаты, параметры и скорость роста, а также пластическую деформацию материала; используют для диагностики сосудов высокого давления, корпусов атомных реакторов, трубопроводов и т.д.

По сравнению с другими методами акустическая дефектоскопия наиболее универсальна и безопасна в эксплуатации.

Дефектоскопию проникающими веществами подразделяют на капиллярную и течеисканием.

Капиллярная дефектоскопия (заполнение под действием капиллярных сил полостей дефектов хорошо смачивающими жидкостями) основана на искусственном повышении свето- и цветоконтрастности дефектного участка относительно неповрежденного. Метод применяют для выявления поверхностных дефектов глубиной > 10 мкм и шириной раскрытия > 1 мкм на деталях из металлов, пластмасс, керамики. Эффект обнаружения дефектов усиливается при использовании веществ, люминесцирующих в УФ лучах (люминесцентный метод), или смесей люминофоров с красителями (цветной метод). Дефектоскопия течеисканием основана на проникании газов или жидкостей через сквозные дефекты и позволяет контролировать герметичность сосудов высокого или низкого давления, многослойных изделий, сварных швов и т. д.

С помощью газовых испытаний утечки либо подсосы выявляют, определяя снижение давления (манометричный метод), создаваемого в изделиях потоком воздуха, азота, гелия, галогена или другого газа, относительное содержание его в окружающей среде (масс-спектрометричный, галогенный методы), изменение теплопроводности (катарометричный метод) и т. д.; на базе этих методов разработаны наиболее высокочувствительные течеискатели. При жидкостных испытаниях изделия заполняют жидкостью (водой, керосином, расвором люминофора) и определяют степень их герметичности по появлению капель и пятен жидкости или светящихся точек на поверхности. Газожидкостные методы основаны на создании внутри изделия повышения давления газа и погружении его в жидкость или обмазывании мест течи мыльной водой; герметичность контролируют по выделению пузырьков газа или мыльной пены. Минимальный размер выявляемого при течеискании дефекта составляет около 1 нм.

Метод люминесцентной дефектоскопии требует применения люминесцентного дефектоскопа или переносных ртутнокварцевых приборов типа ЛЮМ-1, ЛЮМ-2 и т.д. Метод основан на введении в полость дефектов люминесцентного вещества с последующим облучением поверхности детали ультрафиолетовыми лучами. Под их воздействием дефекты становятся видимыми вследствие люминесценции вещества. Метод позволяет выявлть поверхностные дефекты шириной не менее 0,02 мм в деталях любой геометрической формы.

Последовательность операций при люминесцентной дефектоскопии:

Очистка поверхности от загрязнений;

Нанесение проникающего люминесцентного состава;

Нанесение проявляющего порошка;

Осмотр детали в ультрафиолетовых лучах.

Можно применять люминесцентный: керосин - 55-75%, вазелиновое масло – 15-20%; бензол или бензин – 10-20%; эмульгатор – ОП-7 – 2-3 г/л; дефектоль зелено-золотистый – 0,2 г/л. Проявляющие порошки – углекислый магний, тальк или силикагель.

Ведомость дефектов.

После проведения подетальной дефектации составляется дефектная ведомость. В дефектной ведомости отмечается характер повреждения или износа деталей, объем необходимого ремонта с указанием вновь изготавливаемых деталей; указываются также все работы, связанные с капитальным ремонтом (разборка, транспортировка, промывка и т.д.), и работы, которыми заканчивается ремонт (подготовка, шабровка, сборка, проверка на прочность, опробование, сдача в эксплуатацию).

Карты на дефектацию и ремонт являются одним из основных технических документов дляя ремонта. В них излагаются указания по дефектации деталей. Карты располагаются в порядке возрастания нумерации сборочных единиц и деталей или по конструктивной последовательности расположения сборочных единиц.

В левом верхнем углу карты помещается эскиз детали или тенологиеского процесса. На эскизе проставляются габаритные размеры, отдельно показываются профили зубьев шестерен, шлицев, шлицевых и шпоночных пазов, кулаков и т.п. Номера позиций и места контроля выносятся от размерной стрелки и располагаются в возрастающем порядке по часовой стрелке или слева направо.

В правом верхнем углу карты приводятся данные с чертежами, характеризующие деталь.

Принят следующий порядок постороения карты:

Проставляются номера позиций дефектов, указанных на эскизе. Не указанные на эскизе дефекты детали наносятся в первую очередь без проставления позиций;

Заносятся возможные дефекты детали, образующиеся в процессе эксплуатации машины по технологической последовательности их контроля. Сначала отменяются дефекты, определяемые визуально, а затем дефекты, определяемые замерами;

Указываются способы и средства контроля дефектов;

Проставляются номинальне размеры с указанием допусков в соответствии с чертежами завода-изготовителя;

Проставляются допустимые размеры с точностью до 0,01 мм при сопряжении этой детали с новой;

Проставляются допустимые размеры, но в сопряжении с деталью, бывшей в эксплуатации;

Порядок проведения ремонта.

1. Настоящий порядок устанавливает и разъясняет особенности проведения негарантийного и гарантийного ремонта оборудования. Здесь и далее в тексте Мастер – лицо, выполняющее ремонт и несущее связанные с этим расходы, а Заказчик – лицо, сдающее оборудование в ремонт и оплачивающее этот ремонт.

2. Доставка оборудования на территорию Мастера, а также возврат оборудования из ремонта по взаимному соглашению Мастера и Заказчика может быть произведена либо Мастером, либо Заказчиком, либо иным лицом, уполномоченным Заказчиком. В случае доставки оборудования Мастером эта доставка подлежит оплате как транспортный расход (выезд Мастера) согласно действующего на момент выезда прейскуранта. Оплате подлежит как выезд для доставки оборудования в ремонт, так и выезд для возврата оборудования из ремонта.

3. Заказчик при передаче оборудования в ремонт соглашается с тем, что оборудование принимается без разборки и поиска неисправностей. Заказчик соглашается с тем, что все неисправности, обнаруженные Мастером при техническом осмотре оборудования, произошли до момента передачи оборудования Мастеру. Заказчик соглашается с тем, что Мастер может обнаружить другие неисправности, не указанные Заказчиком при передаче оборудования в ремонт.

4. Заказчик принимает на себя риск частичной утраты потребительских свойств ремонтируемого оборудования, которая может произойти после ремонта. Мастер в ходе ремонта старается не допустить потерь потребительских свойств и по возможности минимизирует риск таких потерь.

5. Работы по ремонту оборудования проводятся только после согласования с Заказчиком ориентировочной стоимости ремонта. В случае отказа Заказчика от ремонта оплате подлежит стоимость работ по диагностике неисправности.

6. Ремонт может быть четырёх категорий сложности:

7. В ходе проведения ремонта у Мастера может возникнуть необходимость в проведении косвенных операций. Это операции, непосредственно не связанные с выполнением ремонтных работ, но без выполнения которых проведение ремонта было бы невозможным или крайне затруднительным.

Это такие операции, как:

Поиск в интернете схем, мануалов, сервисных инструкций, даташитов на компоненты, изделия и блоки;

Получение конфиденциальной информации, необходимой для проведения ремонта, от изготовителей микроэлектронных изделий и компонентов;

Составление принципиальных схем, ведение электронных библиотек и баз данных;

Изготовление или приобретение специальных приспособлений, инструментов и установок для ремонта;

Разработка сервисных программ и утилит или поиск их в интернете;

Заказ отсутствующих компонентов в интернете и ожидание их поступления или покупка их в магазинах.

Косвенные операции никоим образом не касаются взаимоотношений Мастера и Заказчика и Заказчиком не оплачиваются. Это – сугубо внутреннее дело Мастера, которое оплачивается Мастером. В отношении к Заказчику косвенные операции приводят лишь к дополнительным задержкам при выполнении ремонта.

8. Стоимость блоков, деталей и узлов, заменённых в ремонтируемом оборудовании, оплачивается Заказчиком и входит в калькуляцию ремонта. Стоимость расходных материалов (спецфлюсы и другие химические вещества, провода и т.п.) входит в стоимость работ по ремонту и отдельно не оплачивается.

9. Заменённые в ходе ремонта неисправные детали, узлы и блоки выдаются Заказчику по его просьбе. За хранение этих деталей, узлов и блоков Мастер несёт ответственность в течение одних суток после выдачи Заказчику отремонтированного оборудования. По истечении суток неисправные детали, узлы и блоки утилизируются.

Лекция N 10

Дефектоскопия – это область знаний, охватывающая теорию, методы и технические средства определения дефектов в материале контролируемых объектов, в частности в материале деталей машин и элементов металлоконструкций.

Дефектоскопия является составной частью диагностики технического состояния оборудования и его составных частей. Работы, связанные с выявлением дефектов в материале элементов оборудования, совмещаются с ремонтами и техническим обслуживаниями или выполняются самостоятельно в период технического осмотра.

Для выявления скрытых дефектов в конструкционных материалах используются различные методы неразрушающего контроля (дефектоскопии).

Известно, что дефекты в металле являются причиной изменения его физических характеристик: плотности, электропроводности, магнитной проницаемости, упругих и других свойств. Исследование этих характеристик и обнаружение с их помощью дефектов составляет физическую сущность методов неразрушающего контроля. Эти методы основаны на использовании проникающих излучений рентгеновских и гамма-лучей, магнитных и электромагнитных полей, колебаний, оптических спектров, явлений капиллярности и других.

Согласно ГОСТ 18353 методы неразрушающего контроля классифицируют по видам: акустические, магнитные, оптические, проникающими веществами, радиационные, радиоволновые, тепловые, электрические, электромагнитные. Каждый вид представляет собой условную группу методов, объединенных общностью физических характеристик.

Выбор вида дефектоскопии зависит от материала, конструкции и размеров деталей, характера выявляемых дефектов и условий дефектоскопии (в мастерских или на машине). Основными качественными показателями методов дефектоскопии являются чувствительность, разрешающая способность, достоверность результатов. Чувствительность – наименьшие размеры выявляемых дефектов; разрешающая способность – наименьшее расстояние между двумя соседними минимальными выявляемыми дефектами, измеряется в единицах длины или числом линий на 1 мм (мм -1). Достоверность результатов – вероятность пропуска дефектов или браковки годных деталей.

Акустические методы основаны на регистрации параметров упругих колебаний, возбужденных в исследуемом объекте. Эти методы широко применяются для контроля толщины деталей, оплошности (трещин, пористости, раковин и т. п.) и физико-механических свойств (зернистости, межкристаллитной коррозии, глубины закаленного слоя и др.) материала. Контроль выполняется на основании анализа характера распространения звуковых волн в материале детали (амплитуды, фазы, скорости, угла преломления, резонансных явлений). Метод пригоден для деталей, материал которых способен упруго сопротивляться деформациям сдвига (металлы, фарфор, оргстекло, некоторые пластмассы).


В зависимости от частоты акустические волны подразделяют на инфракрасные – с частотой до 20 Гц, звуковые (от 20 до 2∙10 4 Гц), ультразвуковые (от 2∙10 4 до 10 9 Гц) и гиперзвуковые (свыше 10 9 Гц). Ультразвуковые дефектоскопы работают с УЗК от 0,5 до 10 МГц.

К основным недостаткам ультразвуковых методов относятся необходимость достаточно высокой чистоты поверхности деталей и существенная зависимость качества контроля от квалификации оператора-дефектоскописта.

Магнитные методы основаны на регистрации магнитных полей рассеивания над дефектами или магнитных свойств контролируемого объекта. Их применяют для обнаружения поверхностных и подповерхностных дефектов в деталях различной формы, изготовленных из ферромагнитных материалов.

При магнитопорошковом способе для обнаружения магнитного потока рассеивания используют магнитные порошки (сухой способ) или их суспензии (мокрый способ). Проявляющийся материал наносят на поверхность изделия. Под действием магнитного поля рассеивания частицы порошка концентрируются около дефекта. Форма его скоплений соответствует очертанию дефекта.

Сущность магнитографического метода заключается в намагничивании изделия при одновременной записи магнитного поля на магнитную ленту, которой покрывают деталь, и последующей расшифровке полученной информации.

Магнитные силовые линии результирующего поля направлены по винтовым линиям к поверхности изделия, что позволяет обнаруживать дефекты разной направленности.

После контроля все детали, кроме бракованных, размагничивают. Восстановление неразмагниченных деталей механической, обработкой может привести к повреждению рабочих поверхностей из-за притягивания стружки. Не следует размагничивать детали, подвергающиеся при восстановлении нагреву сварочно-наплавочными и другими способами до температуры 600…700 о С.

Степень размагниченности контролируют, осыпая детали стальным порошком. У хорошо размагниченных деталей порошок не должен удерживаться на поверхности. Для этих же целей применяют приборы, снабженные феррозондовыми полюсоискателями.

Для контроля деталей магнитопорошковым способом серийно выпускают стационарные, переносные и передвижные дефектоскопы. Последние включают в себя: источники тока, устройства для подвода тока, намагничивания деталей и для нанесения магнитного порошка или суспензии, электроизмерительную аппаратуру. Стационарные приборы характеризуются большой мощностью и производительностью. На них можно проводить все виды намагничивания.

Вихретоковые методы основаны на анализе взаимодействие внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте.

Методы вихревых токов позволяют обнаруживать поверхностные дефекты, в том числе под слоем металлических и неметаллических покрытий, контролировать размеры покрытий и деталей (диаметры шаров, труб, проволоки, толщину листов и др.), определять физико-механические свойства материалов (твердости, структуры, глубины азотирования и др.), измерять вибрации и перемещения деталей в процессе работы машины.

Дефектоскопия деталей радиационными методами основана на регистрации ослабления интенсивности радиоактивного излучения при прохождении через контролируемый, объект. Наиболее часто применяются рентгеновский и γ-контроль деталей и сварных швов. Промышленностью выпускаются как передвижные рентгеновские аппараты для работы в условиях мастерских, так и портативные для работы в полевых условиях. Регистрация результатов радиационного контроля осуществляется визуально (изображение на экранах, в том числе стереоскопическое изображение), в виде электрических сигналов, фиксацией на фотопленке или обычной бумаге (ксерорадиография).

Достоинства радиационных методов: высокое качество контроля, особенно литья, сварных швов, состояния закрытых полостей элементов машин; возможность документального подтверждения результатов контроля, не требующего дополнительной расшифровки. Существенными недостатками являются сложность аппаратуры и организации выполнения работ, связанной с обеспечением безопасного хранения и использования источников радиационного излучения.

Радиоволновые методы основаны на регистрации изменения электромагнитных колебаний, взаимодействующих с контролируемым объектом. На практике получили распространение сверхвысокочастотные (СВЧ) методы в диапазоне длин волн от 1 до 100 мм. Взаимодействие радиоволн с объектом оценивают по характеру поглощения, дифракции, отражения, преломления волны, интерференционным процессам, резонансным эффектам. Эти методы применяют для контроля качества и геометрических параметров изделий из пластмасс, стеклопластиков, термозащитных и теплоизоляционных материалов, а также для измерения вибрации.

Тепловые методы. В тепловых методах в качестве диагностируемого параметра используется тепловая энергия, распространяющаяся в объекте, излучаемая объектом, поглощаемая объектом. Температурное поле поверхности объекта является источником информации об особенностях процессов теплопередачи, которые, в свою очередь, зависят от наличия внутренних и наружных дефектов, охлаждения объекта или его части в результате истечения среды и т.п.

Контроль температурного поля осуществляют с помощью термометров, термоиндикаторов, пирометров, радиометров, инфракрасных микроскопов, тепловизоров и других средств.

Оптические методы. Оптический неразрушающий контроль основан на анализе взаимодействия оптического излучения с объектом. Для получения информации используют явления интерференции, дифракции, поляризации, преломления, отражения, поглощения, рассеивания света, а также изменение характеристик самого объекта исследования в результате эффектов фотопроводимости, люминесценции, фотоупругости и других.

К числу дефектов, обнаруживаемых оптическими методами, относятся нарушения сплошности, расслоения, поры, трещины, включения инородных тел, изменения структуры материалов, коррозионные раковины, отклонение геометрической формы от заданной, а также внутренние напряжения в материале.

Визуальная энтроскопия позволяет обнаружить дефекты на поверхностях объекта. Энтроскопы (видеобороскопы) для внутреннего обследования труднодоступных мест объекта включают в себя зонд из стекловолокна, с помощью которого исследователь может проникать вовнутрь объекта, и экран визуального наблюдения поверхности, а также принтер для видеозаписи исследуемой поверхности объекта. Применение оптических квантовых генераторов (лазеров) позволяет расширить границы традиционных оптических методов контроля и создать принципиально новые методы оптического контроля: голографические, акустооптические.

Капиллярный метод дефектоскопии основан на капиллярном проникновении индикаторных жидкостей в полости поверхностных и сквозных несплошностей объекта, и регистрации образующихся индикаторных следов визуально или с помощью преобразователя (датчика).

Капиллярные методы применяют для обнаружения дефектов в деталях простой и сложной формы. Эти методы позволяют обнаруживать дефекты производственно-технологического и эксплуатационного происхождения: трещины шлифовочные, термические, усталостные, волосовины, закаты и др. В качестве проникающих веществ используют керосин, цветные, люминесцентные и радиоактивные жидкости, а также применяют метод избирательно фильтрующихся частиц.

При использовании цветных жидкостей индикаторный рисунок получается цветным, обычно красным, который хорошо выделяется на белом фоне проявителя – цветная дефектоскопия. При использовании люминесцирующих жидкостей индикаторный рисунок становятся хорошо видимым под воздействием ультрафиолетовых лучей – люминесцентный метод. Контроль характера индикаторных рисунков осуществляется визуально-оптическим методом. При этом линии рисунка обнаруживаются сравнительно легко, так как они в десятки раз шире и контрастнее, чем дефекты.

Простейшим примером капиллярной дефектоскопии является керосиновая проба. Проникающей жидкостью служит керосин. Проявитель – мел в виде сухого порошка или водной суспензии. Керосин, просачиваясь в слой мела, вызывает его потемнение, которое обнаруживается при дневном свете.

Достоинствами капиллярной дефектоскопии являются универсальность в отношении формы, и материалов деталей, хорошая наглядность результатов, простота и низкая стоимость материалов, высокая достоверность и хорошая чувствительность. В частности, минимальные размеры обнаруживаемых трещин составляют: ширина 0,001 – 0,002 мм, глубина 0,01 – 0,03 мм. Недостатки: возможность обнаружения только поверхностных дефектов, большая длительность процесса (0,5 м – 1,5 ч) и трудоемкость (необходимость тщательной очистки), токсичность некоторых проникающих жидкостей, недостаточная надежность при отрицательных температурах.

Трещины в деталях можно обнаруживать с помощью керосиновой пробы.

Керосин обладает хорошей смачивающей способностью, глубоко проникает в сквозные дефекты диаметром более 0,1 мм. При контроле качества сварных швов на одну из поверхностей изделия наносят керосин, а на противоположную – адсорбирующее покрытие (350...450 г суспензии молотого мела на 1 л воды). Наличие сквозной трещины определяют по желтым пятнам керосина на меловой обмазке.

Для выявления сквозных пор и трещин широко используются гидравлический и пневматический методы испытаний.

При гидравлическом методе внутреннюю полость изделия заполняют рабочей жидкостью (водой), герметизируют, создают насосом избыточное давление и выдерживают деталь некоторое время. Наличие дефекта устанавливают визуально по появлению капель воды или отпотеванию наружной поверхности.

Пневматический метод нахождения сквозных дефектов более чувствителен, чем гидравлический, так как воздух легче проходит через дефект, чем жидкость. Во внутреннюю полость деталей закачивают сжатый воздух, а наружную поверхность покрывают мыльным раствором или погружают деталь в воду. О наличии дефекта судят по выделению пузырьков воздуха. Давление воздуха, закачиваемого во внутренние полости, зависит от конструктивных особенностей деталей и обычно равно 0,05 – 0,1 МПа.

Методы неразрушающего контроля не являются универсальными. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов. Выбор метода неразрушающего контроля определяется конкретными требованиями практики и зависит от материала, конструкции исследуемого объекта, состояния его поверхности, характеристики дефектов, подлежащих обнаружению, условий работы объекта, условий контроля и технико-экономических показателей.

Поверхностные и подповерхностные дефекты в ферромагнитных сталях обнаруживают намагничиванием детали и фиксацией при этом поля рассеивания с помощью магнитных методов. Те же дефекты в изделиях, изготовленных из немагнитных сплавов, например, жapoпpoчныx, нержавеющих, нельзя выявить магнитными методами. В этом случае применяют, например, электромагнитный метод. Однако и этот метод непригоден для изделий из пластмасс. В этом случае оказывается эффективным капиллярный метод. Ультразвуковой метод малоэффективен при выявлении внутренних дефектов в литых конструкциях и сплавах с высокой степенью анизотропии. Такие конструкции контролируют с помощью рентгеновских или гамма лучей.

Конструкция (форма и размеры) деталей также обусловливает вы-

бор метода контроля. Если для контроля объекта простой формы можно применить почти все методы, то для контроля объектов сложной формы применение методов ограничено. Объекты, имеющие большое количество выточек, канавок, уступов, геометрических переходов, трудно контролировать такими методами, как магнитный, ультразвуковой, радиационный. Крупногабаритные объекты контролируют по частям, определяя зоны наиболее опасных участков.

Состояние поверхности изделия, под которым подразумевают ее шероховатость и наличие на ней защитных покрытий и загрязнений существенно влияет на выбор метода и подготовку поверхности к исследованиям. Грубая шероховатая поверхность исключает применение капиллярных методов, метода вихревых токов, магнитных и ультразвуковых методов в контактном варианте. Малая шероховатость расширяет возможности методов дефетоскопии. Ультразвуковой и капиллярный методы применяют при шероховатости поверхности не более 2,5 мкм, магнитный и вихретоковый – не более 10 мкм. Защитные покрытия не позволяют применять оптические, магнитные и капиллярные методы. Эти методы можно применять только после удаления покрытия. Если такое удаление невозможно, применяют радиационные, и ультразвуковые методы. Электромагнитным методом обнаруживают трещины на деталях, имеющих лакокрасочные и другие неметаллические покрытия толщиной до 0,5 мм и неметаллические немагнитные покрытия до 0,2 мм.

Дефекты имеют различное происхождение и отличаются по виду, размерам, месту расположения, ориентации относительно волокна металла. При выборе метода контроля следует изучить характер возможных дефектов. По расположению дефекты могут быть внутренними, залегающими на глубине более 1 мм, подповерхностными (на глубине до 1 мм) и поверхностными. Для обнаружения внутренних дефектов в стальных изделиях используют чаще радиационный и ультразвуковые методы. Если изделия имеют сравнительно небольшую толщину, a дефекты, подлежащие выявлению, достаточно большие размеры, то лучше пользоваться радиационными методами. Если толщина изделия в направлении просвечивания больше 100-150 мм или требуется обнаружить в нем внутренние дефекты в виде трещин или тонких расслоений, то применять радиационные методы нецелесообразно, так как лучи не приникают на такую глубину и их направление перпендикулярно направлению трещин. В таком случае наиболее приемлем ультразвуковой контроль.

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw