Согласующие устройства: назначение и принцип построения. Любительское радио Куплю самодельное согласующее устройство для трансивера sw

Главная / Двигатель

Современная приемо-передающая транзисторная техника, как правило, имеет широкополосные тракты, входные и выходные сопротивления которых составляют 50 или 75 Ом. Поэтому для реализации заявленных параметров такой аппаратуры требуется обеспечить активную нагрузку сопротивлением 50 или 75 Ом как для приемной, так и для передающей частей. Акцентирую внимание на том, что для приемного тракта также требуется согласованная нагрузка!

Конечно, в приемнике это никак ни на ощупь, ни на цвет или вкус без приборов не заметить. По-видимому, из-за этого некоторые коротковолновики "с пеной у рта" отстаивают преимущества старых РПУ типа Р-250, "Крот" и им подобных перед современной техникой. Старая техника чаще всего комплектуется подстраиваемой (или перестраиваемой) входной цепью, с помощью которой можно согласовать РПУ с проволокой-антенной с "КСВ=1 почти на всех диапазонах".

Если радиолюбитель действительно хочет проверить качество согласования цепи "вход трансивера - антенна", ему достаточно собрать примитивнейшее согласующее устройство (СУ), например, П-контур, состоящий из двух КПЕ с максимальной емкостью не менее 1000 пФ (если предполагается проверка и на НЧ-диапазонах) и катушки с изменяемой индуктивностью. Включив это СУ между трансивером и антенной, изменением емкости КПЕ и индуктивности катушки добиваются наилучшего приема. Если при этом номиналы всех элементов СУ будут стремиться к нулю (к минимальным значениям) - можете смело выбросить СУ и со спокойной совестью работать в эфире и дальше, по крайней мере, слушать диапазоны.

Для тракта передатчика отсутствие оптимальной нагрузки может окончиться более печально. Рано или поздно ВЧ-мощность, отраженная от рассогласованной нагрузки, находит слабое место в тракте трансивера и "выжигает" его, точнее, такой перегрузки не выдерживает какой-нибудь из элементов. Конечно, можно и ШПУ изготовить абсолютно надежным (например, с транзисторов снимать не более 20% мощности), но тогда по стоимости он будет, сопоставим с узлами дорогой импортной техники.

Например, 100-ваттный ШПУ, производимый в США в виде набора для трансивера К2, стоит 359 USD, а тюнер для него - 239 USD. И зарубежные радиолюбители идут на такие затраты, дабы получить "всего-то какое-то согласование", о котором, как показывает опыт автора этой статьи, не задумываются многие наши пользователи транзисторной техники... Мысли о согласовании трансивера с нагрузкой в головах таких горе радиолюбителей начинают возникать только после случившейся аварии в аппаратуре.

Ничего не поделаешь - таковы сегодняшние реалии. Экзамены при получении лицензий и повышении категории любительской радиостанции зачастую проводятся формально. В лучшем случае у претендента на лицензию проверяется знание телеграфной азбуки. Хотя в современных условиях, на мой взгляд, целесообразно больший акцент делать на проверку технической грамотности - поменьше было бы "групповух для работы на даль" и "рассусоливаний" по поводу преимуществ UW3DI перед "всякими Айкомами и Кенвудами".

Автора статьи радует тот факт, что все реже и реже на диапазонах слышны разговоры о проблемах при работе в эфире с транзисторными усилителями мощности (например, появления TVI или низкой надежности выходных транзисторов). Компетентно заявляю, что если транзисторный усилитель правильно спроектирован и грамотно изготовлен, а при эксплуатации постоянно не превышаются максимальные режимы работы радиоэлементов, то он практически "вечен", теоретически, в нем ничего сломаться не может.

Обращаю внимание на то, что если постоянно не превышаются максимально допустимые параметры транзисторов, они никогда не выходят из строя. Кратковременную перегрузку, особенно транзисторы, предназначенные для линейного усиления в КВ-диапазоне, выдерживают достаточно легко. Изготовители мощных ВЧ-транзисторов проверяют надежность произведенного продукта таким способом - берется резонансный ВЧ-усилитель, и после того как на выходе устанавливаются оптимальный режим и номинальная мощность, вместо нагрузки подключают испытательное устройство. Элементы настройки позволяют менять активную и реактивную составляющие нагрузки.

Если в оптимальном режиме нагрузка связана с испытуемым транзистором через линию с волновым сопротивлением 75 Ом, то обычно в рассматриваемом устройстве отрезок линии замыкается резистором сопротивлением 2,5 или 2250 Ом. При этом КСВ будет равен 30:1. Такое значение КСВ не позволяет получить условия от полного обрыва до полного короткого замыкания нагрузки, но реально обеспечиваемый диапазон изменений достаточно близок к этим условиям.

Завод-изготовитель гарантирует исправность транзисторов, предназначенных для линейного усиления КВ-сигнала, при рассогласовании нагрузки 30:1 в течение не менее 1 с при номинальной мощности. Этого времени вполне достаточно для срабатывания защит от перегрузки. Работа усилителя мощности при таких значениях КСВ не имеет смысла, т.к. эффективность практически "нулевая", т.е. речь, конечно, идет об аварийных ситуациях.

Для решения проблемы согласования приемо-передающей аппаратуры с антенно-фидерными устройствами существует довольно дешевый и простой способ - применение дополнительного внешнего согласующего устройства. Хотелось бы акцентировать внимание счастливых пользователей "буржуинской" техники, не имеющей антенных тюнеров (да и самодеятельных конструкторов тоже), на этом очень важном вопросе.

Вся промышленная приемо-передающая аппаратура (и ламповая в том числе) комплектуется не только фильтрующими, но и, дополнительно, согласующими блоками. Возьмите, к примеру, ламповые радиостанции Р-140, Р-118, Р-130 - у них согласующие устройства занимают не менее четверти объема станции. А транзисторная широкополосная передающая техника вся, без исключения, комплектуется такими согласователями.

Изготовители идут даже на увеличение себестоимости этой техники - комплектуют автоматическими СУ (тюнерами). Но эта автоматика предназначена для того, чтобы обезопасить радиоаппаратуру от бестолкового пользователя, который смутно себе представляет, что и зачем он должен крутить в СУ. Предполагается, что радиолюбитель с позывным обязан иметь минимальное представление о процессах, происходящих в антенно-фидерном устройстве его радиостанции.

В зависимости от того, какие антенны применяются на любительской радиостанции, можно использовать то или иное согласующее устройство. Заявление некоторых коротковолновиков о том, что они применяют антенну, КСВ которой почти единица на всех диапазонах, поэтому СУ не требуется, показывает отсутствие минимальных знаний по этой теме. "Физику" здесь еще никому не удалось обмануть - никакая качественная резонансная антенна не будет иметь одинаковое сопротивление ни внутри всего диапазона, ни тем более на разных диапазонах.

Что и происходит чаще всего - устанавливается или "инвертед-V" на 80 и 40 м, или рамка с периметром 80 м, а в худшем случае бельевая веревка используется в качестве "антенны". Особенно "талантливые" изобретают универсальные штыри и "морковки", которые, по безапелляционным заверениям авторов, "работают на всех диапазонах практически без настройки!"

Настраивается такое сооружение в лучшем случае на одном-двух диапазонах, и все - вперед, "зовем - отвечают, что еще больше нужно?" Печально, что для увеличения "эффективности работы" таких антенн все поиски приводят к "радиоудлинителям" типа выходного блока от Р-140 или Р-118. Достаточно послушать любителей "работать в группе на даль" ночью на 160 и 80-метровых диапазонах, а в последнее время такое можно уже встретить на 40 и 20 м.

Если антенна имеет КСВ = 1 на всех диапазонах (или хотя бы на нескольких) - это не антенна, а активное сопротивление, или тот прибор, которым измеряется КСВ, "показывает" окружающую температуру (которая в комнате обычно постоянна).

Не знаю - удалось или нет мне убедить читателя в том, что применять СУ требуется обязательно, но, тем не менее, перейду к описанию конкретных схем таких устройств. Их выбор зависит от применяемых на радиостанции антенн. Если входные сопротивления излучающих систем не опускаются ниже 50 Ом, можно обойтись примитивным согласующим устройством Г-образного типа - рис.1, т.к. оно работает только в сторону повышения сопротивления. Для того чтобы это же устройство "понижало" сопротивление, его необходимо включить наоборот, т.е. поменять местами вход и выход.

Автоматические антенные тюнеры почти всех импортных трансиверов выполнены по схеме, показанной на рис.2. Антенные тюнеры в виде отдельных устройств фирмы изготавливают чаще по другой схеме (рис.3). Описание этой схемы можно найти, например, в . Во всех фирменных СУ, изготовленных по этой схеме, имеется дополнительная бескаркасная катушка L2, намотанная проводом диаметром 1,2...1,5 мм на оправке диаметром 25 мм. Число витков - 3, длина намотки - 38 мм.

С помощью двух последних схем можно обеспечить КСВ = 1 практически на любой кусок провода. Однако не забывайте - КСВ = 1 говорит о том, что передатчик имеет оптимальную нагрузку, но это ни в коей мере не означает высокую эффективность работы антенны. С помощью СУ, схема которого приведена на рис.2, можно согласовать щуп от тестера в качестве антенны с КСВ = 1, но, кроме ближайших соседей, эффективность работы такой "антенны" никто не оценит. В качестве СУ можно использовать и обычный П-контур - рис.4. Достоинство такого решения - не требуется изолировать КПЕ от общего провода, недостаток - при большой выходной мощности трудно найти переменные конденсаторы с требуемым зазором.


При применении на станции более или менее настроенных антенн и в том случае, когда не предполагается работа на 160 м индуктивность катушки СУ может не превышать 10...20 мкГн. Очень важно, чтобы имелась возможность получения малых индуктивностей до 1 ...3 мкГн.

Шаровые вариометры для этих целей обычно не подходят, т.к. индуктивность перестраивается в меньших пределах, чем у катушек с "бегунком". В фирменных антенных тюнерах применяются катушки с "бегунком", у которых первые витки намотаны с увеличенным шагом - это сделано для получения малых индуктивностей с максимальной добротностью и минимальной межвитковой связью.

Достаточно качественное согласование можно получить, применяя в СУ "вариометр бедного радиолюбителя". Это две последовательно включенные катушки с переключением отводов (рис.5). Катушки - бескаркасные, и содержат по 35 витков провода диаметром 0,9...1,2 мм (в зависимости от предполагаемой мощности), намотанного на оправке 020 мм.

После намотки катушки сворачивают в кольцо и отводами припаивают на выводы обычных керамических переключателей на 11 положений. Отводы у одной катушки следует сделать от четных витков, у другой - от нечетных, например - от 1,3,5,7,9,11, 15,19, 23, 27-го витков и от 2,4, 6, 8,10, 14,18,22,28,30-го витков. Включив две такие катушки последовательно, можно переключателями подобрать требуемое количество витков тем более, что для СУ не особенно важна точность подбора индуктивности. С главной задачей - получением малых индуктивностей - "вариометр бедного радиолюбителя" справляется успешно.


Чтобы этот самодельный тюнер по своим возможностям квазиплавной настройки приближался к "буржуинским" антенным тюнерам, например, АТ-130 от ICOM или АТ-50 от Kenwood, придется вместо одного галетного переключателя ввести закорачивание отводов катушки "релюшками", каждая из которых будет включаться отдельным тумблером. Семи "релюшек", коммутирующих семь отводов, будет достаточно, чтобы смоделировать "ручной АТ-50".

Пример релейной коммутации катушек приведен в . Зазоры между пластинами в КПЕ должны выдерживать предполагаемое напряжение. Если применяются низкоомные нагрузки, при выходной мощности до 200...300 Вт можно обойтись КПЕ от старых типов РПУ. Если высокоомные - придется подобрать КПЕ с требуемыми зазорами (от промышленных радиостанций).

Подход при выборе КПЕ очень прост - 1 мм зазора между пластинами выдерживает напряжение 1000 В. Предполагаемое напряжение можно найти по формуле U = Ц P/R , где:

  • Р - мощность,
  • R - сопротивление нагрузки.
  • На радиостанции обязательно должен быть установлен переключатель, при помощи которого трансивер отключается от антенны в случае грозы (или в выключенном состоянии), т.к. более 50% случаев выхода из строя транзисторов связаны с наводкой статического электричества. Переключатель можно смонтировать или в антенном коммутаторе, или в СУ.

    П-образное согласующее устройство

    Итогом различных опытов и экспериментов по рассмотренной выше теме стала реализация П-образного "согласователя" - рис.6. Конечно, трудно избавиться от "комплекса схемы буржуинских тюнеров" рис.2 - эта схема имеет важное преимущество, заключающееся в том, что антенна (по крайней мере, центральная жила кабеля) гальванически развязана от входа трансивера через зазоры между пластинами КПЕ. Но безрезультатные поиски подходящих КПЕ для этой схемы вынудили отказаться от нее. Кстати, схему П-контура используют и некоторые фирмы, выпускающие автоматические тюнеры, например, американская КАТ1 Elekraft или голландская Z-11 Zelfboum.

    Помимо согласования, П-контур выполняет еще и роль фильтра низких частот, что очень полезно при работе на перегруженных радиолюбительских диапазонах - вряд ли кто-то откажется от дополнительной фильтрации гармоник. Главный недостаток схемы П-образного согласующего устройства - необходимость применения КПЕ с достаточно большой максимальной емкостью, что наводит на мысль о причине, по которой такая схема не применяется в автоматических тюнерах импортных трансиверов. В Т-образных схемах чаще всего используются два КПЕ, перестраиваемые моторчиками. Понятно, что КПЕ на 300 пФ будет намного меньше размером, дешевле и проще, нежели КПЕ на 1000 пФ.


    В схеме СУ, показанной на рис.6, применены КПЕ с воздушным зазором 0,3 мм от ламповых приемников. Обе секции конденсатора включены параллельно. В качестве индуктивности применена катушка с отводами, переключаемыми керамическим галетным переключателем.

    Катушка - бескаркасная, и содержит 35 витков провода 00,9... 1,1 мм, намотанных на оправке 021...22 мм. После намотки катушка свернута в кольцо и своими короткими отводами припаяна к выводам галетного переключателя. Отводы сделаны от 2, 4, 7, 10, 14, 18, 22, 26 и 31-го витков.

    КСВ-метр изготовлен на ферритовом кольце. Проницаемость кольца при работе на KB решающего значения, в общем-то, не имеет, в авторском варианте применено кольцо 1000НН с внешним диаметром 10 мм.

    Кольцо обмотано тонкой лакотканью, а затем на него намотаны 14 витков провода ПЭЛ 0,3 (без скрутки, в два провода). Начало одной обмотки, соединенное с концом второй, образует средний вывод.

    В зависимости от требуемой задачи (точнее, от того, какую мощность предполагается пропускать через СУ, и от качества светодиодов VD4 и VD5), можно использовать кремниевые или германиевые детектирующие диоды VD2 и VD3. При использовании германиевых диодов можно получить более высокую чувствительность. Наилучшие из них - ГД507. Однако автор применяет трансивер с выходной мощностью не менее 50 Вт, поэтому в КСВ-метре отлично работают обычные кремниевые диоды КД522.

    Как "ноу-хау", помимо обычной, на стрелочном приборе, применена светодиодная индикация настройки. Для индикации "прямой волны" используется светодиод VD4 зеленого цвета, а для визуального контроля за "обратной волной" - красного цвета (VD5). Как показала практика, это очень удачное решение - всегда можно оперативно отреагировать на аварийную ситуацию. Если во время работы в эфире что-то случается с нагрузкой, красный светодиод начинает ярко вспыхивать в такт с излучаемым сигналом.

    Ориентироваться по стрелке КСВ-метра менее удобно - не будешь же постоянно пялиться на нее во время передачи! А вот яркое свечение красного света хорошо заметно даже боковым зрением. Это положительно оценил Юрий, RU6CK, когда у него появилось такое СУ (к тому же, у Юрия плохое зрение). Уже более года и сам автор использует в основном только "светодиодную настройку" СУ, т.е. настройка "согласователя" сводится к тому, чтобы погас красный светодиод и ярко "полыхал" зеленый. Если уж и захочется более точной настройки, ее можно "выловить" по стрелке микроамперметра. В качестве микроамперметра применен прибор М68501 с током полного отклонения 200 мкА. Можно применить и М4762 - они устанавливались в магнитофонах "Нота", "Юпитер". Понятно, что С1 должен выдерживать напряжение, выдаваемое трансивером в нагрузку.

    Настройка изготовленного устройства выполняется с использованием эквивалента нагрузки, который рассчитан на рассеивание выходной мощности каскада. Присоединяем СУ к трансиверу "коаксиалом" минимальной длины (насколько это возможно, т.к. этот отрезок кабеля будет использоваться в дальнейшей работе СУ и транисивера) с требуемым волновым сопротивлением, на выход СУ без всяких "длинных шнурков" и коаксиальных кабелей подключаем эквивалент нагрузки, выкручиваем все ручки СУ на минимум и выставляем при помощи С1 минимальные показания КСВ-метра при "отраженке". Следует заметить, что выходной сигнал передатчика не должен содержать гармоник (т.е. должен быть фильтрованный), в противном случае минимум можно и не отыскать. Если конструкция изготовлена правильно, минимум получается при емкости С1, близкой к минимальной.

    Затем меняем местами вход и выход прибора и снова проверяем "баланс". Проверку осуществляем на нескольких диапазонах. Сразу предупреждаю, автор не в состоянии помочь каждому радиолюбителю, который не справился с настройкой описанного СУ. Если у кого-то не получается изготовить СУ самостоятельно, у автора данной статьи можно заказать готовое изделие. Всю информацию можно получить здесь .

    Светодиоды VD4 и VD5 необходимо выбирать современные, с максимальной яркостью свечения. Желательно, чтобы светодиоды имели максимальное сопротивление при протекании номинального тока. Автору удалось приобрести красные светодиоды сопротивлением 1,2 кОм и зеленые - 2 кОм. Обычно зеленые светодиоды светятся слабо, но это и неплохо - ведь изготавливается не елочная гирлянда. Главное требование к зеленому светодиоду - его свечение должно быть достаточно отчетливо заметно в штатном режиме передачи. А вот цвет свечения красного светодиода, в зависимости от предпочтений пользователя, можно выбрать от ядовито-малинового до алого.

    Как правило, такие светодиоды имеют диаметр З...3,5 мм. Для более яркого свечения красного светодиода применено удвоение напряжения - в схему введен диод VD1. По этой причине точным измерительным прибором наш КСВ-метр уже не назовешь - он завышает "отраженку". Если требуется измерять точные значения КСВ, необходимо применить светодиоды с одинаковым сопротивлением и сделать два плеча КСВ-метра абсолютно одинаковыми - или оба с удвоением напряжения, или без удвоения. Однако оператора скорее волнует качество согласования цепи "трансивер - антенна", а не точное значение КСВ. Для этого вполне достаточно светодиодов.

    Предложенное СУ эффективно при работе с антеннами, запитанными через коаксиальный кабель. Автор испытывал СУ на "стандартные", распространенные антенны "ленивых" радиолюбителей - "рамку" периметром 80 м, "инвертед-V" - совмещенные 80 и 40 м, "треугольник" периметром 40 м, "пирамиду" на 80 м.

    Константин, RN3ZF, (у него FT-840) применяет такое СУ со "штырем" и "инвертед-V" в том числе, и на WARC-диапазонах, UR4GG - с "треугольником" на 80 м и трансиверами "Волна" и "Дунай", a UY5ID с помощью описанного СУ согласовывает ШПУ на КТ956 с многосторонней рамкой периметром 80 м с симметричным питанием (используется дополнительный переход на симметричную нагрузку).

    Если при настройке СУ не удается погасить красный светодиод (достичь минимальных показаний прибора), это может означать, что, помимо основного сигнала, в излучаемом спектре содержатся гармоники (СУ не в состоянии обеспечить согласование одновременно на нескольких частотах). Гармоники, которые по частоте располагаются выше основного сигнала, не проходят через ФНЧ, образуемый элементами СУ, отражаются, и на обратном пути "поджигают" красный светодиод. О том, что СУ "не справляется" с нагрузкой, может говорить только лишь тот факт, что согласование происходит при крайних значениях (не минимальных) параметров КПЕ и катушки, т.е. когда не хватает емкости или индуктивности. Ни у кого из указанных пользователей при работе СУ с перечисленными антеннами ни на одном из диапазонов таких случаев не отмечено.

    СУ было испытано с "веревкой", т.е. с проволочной антенной длиной 41 м. Не следует забывать, что КСВ-метр является измерительным прибором только в случае обеспечения с обеих его сторон нагрузки, при которой он балансировался. При настройке на "веревку" светятся оба светодиода, поэтому за критерий настройки можно принять максимально яркое свечение зеленого светодиода при минимально возможной яркости красного. По-видимому, это будет наиболее верная настройка - по максимуму отдачи мощности в нагрузку.

    Хотелось бы обратить внимание потенциальных пользователей данного СУ на то, что ни в коем случае нельзя переключать отводы катушки при излучении максимальной мощности. В момент переключения происходит разрыв цепи катушки (хотя и на доли секунды), и резко меняется ее индуктивность. Соответственно, подгорают контакты галетного переключателя и резко меняется сопротивление нагрузки выходного каскада. Переключать галетный переключатель необходимо только в режиме приема.

    Информация для дотошных и "требовательных" читателей - автор статьи сознает, что КСВ-метр, установленный в СУ, не является прецизионным высокоточным измерительным прибором. Да такой цели при его изготовлении и не ставилось! Основная задача была - обеспечить трансиверу с широкополосными транзисторными каскадами оптимальную согласованную нагрузку, еще раз повторю - как передатчику, так и приемнику. Приемник, как и мощный ШПУ, в полной мере нуждается в качественном согласовании с антенной!

    Кстати, если в вашем "радио" оптимальные настройки для приемника и передатчика не совпадают, это говорит о том, что настройка аппарата или вообще толком не производилась, а если и производилась, то, скорее всего, только передатчика, а полосовые фильтры приемника имеют оптимальные параметры при других значениях нагрузки.

    КСВ-метр, установленный в СУ, покажет, что регулировкой элементов СУ мы добились параметров той нагрузки, которую присоединяли к выходу ANTENNA трансивера во время его настройки. Применяя СУ, можно спокойно работать в эфире, зная, что трансивер не "пыжится и молит о пощаде", а имеет почти ту же нагрузку, на которую его и настраивали. Разумеется, это не говорит о том, что антенна, подключенная к СУ, стала работать лучше. Не забывайте об этом!

    Радиолюбителям, мечтающим о прецизионном КСВ-метре, могу рекомендовать изготовить его по схемам, приведенным во многих зарубежных серьезных изданиях, или купить готовый прибор. Но придется раскошелиться - действительно, приборы, выпускаемые известными фирмами, стоят от 50 USD и выше СВ - ишные польско-турецко-итальянские во внимание не беру. Удачная, хорошо описанная конструкция КСВ-метра приведена в .

    А. Тарасов, (UT2FW) [email protected]

    Литература:

    1. Бунин С.Г., Яйленко Л.П. Справочник радиолюбителя-коротковолновика. - К.: Техника, 1984.
    2. М. Левит. Прибор для определения КСВ. - Радио, 1978, N6.
    3. http://www.cqham.ru/ut2fw/

    Мне понадобилась приёмо-передающая антенна, которая работала бы на всех КВ и УКВ диапазонах и при этом её не нужно было перестраивать и согласовывать. Антенна не должна иметь строгие размеры и должна работать в любых условиях.

    С недавних пор, у меня дома стоит FT-857D, у этого (как и у многих других) трансивера нет тюнера. На крышу не пускают, а работать в эфире хочется, поэтому с лоджии, я спустил под углом 50 градусов, кусок провода, длину которого даже не мерил, но судя по резонансной частоте 5.3МГц, длина примерно 14 метров. Поначалу, я делал разные согласующие устройства к этому куску, все работало и согласовывалось как обычно, но было неудобно бегать из комнаты на лоджию чтобы перестраивать антенну на нужный диапазон. Да и уровень шума на 7.0, 3.6 и 1.9МГц доходил до 7 баллов по S-метру (многоэтажный дом, рядом центральная улица и куча проводов) . Тогда пришла мысль сделать антенну которая бы меньше шумела и её не нужно было перестраивать по диапазонам. Конечно при этом немного упадёт эффективность.

    Изначально понравилась идея TTFD, но она тяжёлая, слишком заметная, да и кусок провода уже висел (не снимать же его) . Вообщем, взяв за основу принцип этой антенны, я немного изменил её подключение, а что из этого получилось вы видите на картинке. В качестве безиндукционного резистора 50ом используется эквивалент расчитанный на 100Вт мощности. Противовес, это кусок провода длиной 5 метров, который проложен по периметру лоджии. Думаю что несколько резонансных противовесов, улучшат работу этой антенны на передачу (впрочем как и любого другого штыря) . Кабель РК-50-11, идет к радиостанции и имеет длину около семи метров.

    При подключении этой антенны к радиостанции, шумы эфира снижаются на 3 - 5 делений по S-метру, по сравнению с резонансной. Полезные сигналы тоже немного падают по уровню, но слышно их лучше. На передачу антенна имеет КСВ 1:1 в диапазоне 1.5 - 450МГц, поэтому сейчас я её использую для работы на всех КВ/УКВ диапазонах мощностью 100Вт. и мне отвечают все кого я слышу.

    Чтобы убедится в том что антенна работает, я провел несколько экспериментов. Для начала сделал два отдельных подключения к лучу. Первое это укорачивающая ёмкость, с ней получается удлиненный штырь на 7МГц, который отлично согласуется и имеет КСВ = 1.0. Второе - описанный здесь широкополосный вариант с резистором. Таким образом у меня появилась возможность быстро переключать согласующие устройства. Потом я выбирал на 7МГЦ слабые станции, обычно это были DL, IW, ON... и слушал их, периодически меняя согласующие устройства. Прием был примерно одинаковым, на обе антенны, но в широкополосном варианте, уровень шумов был значительно меньше что субьективно, улучшало слышимость слабых сигналов.

    Сравнение между удлиненным штырем и широкополосной антенной, на передачу в диапазоне 7МГц, дало следующие результаты:
    ....связь с RW4CN: на удлиненный GP 59+5, на широкополосную 58-59 (расстояние 1000км)
    ....связь с RA6FC: на удлиненный GP 59+10, на широкополосную 59 (расстояние 3км)

    Как и следовало ожидать, широкополосная антенна проигрывает на передачу резонансной. Однако величина проигрыша небольшая, а с повышением частоты она будет ещё меньше и во многих случаях ей можно пренебречь. Зато антенна реально работает в сплошном и очень широком диапазоне частот.

    В связи с тем что длина излучающего элемента 14 метров, антенна действительно эффективна только до 7МГц, в диапазоне 3.6МГц многие станции меня слышат плохо или вообще не отвечают, на 1.9МГц возможны только местные QSO. В тоже время от 7МГц и выше никаких проблем со связью нет. Слышимость отличная, отвечают все, в том числе и DX, экспедиции и всякие мобильные р/станции. На УКВ я открываю все месные репитеры и провожу FM QSO, правда на 430мгц сильно сказывается горизонтальная поляризация антенны.

    Эту антенну можно использовать как основную, запасную, приёмную, аварийную и антишумовую, чтобы лучше слышать удаленные станции в городе. Расположив её как штырь или сделав диполь, результаты будут ещё лучше. Вы можете ""превратить"" в широкополосную, любую антенну уже установленную ранее (диполь или штырь) и поэкспериментировать с этим, нужно только добавить нагрузочный резистор. Обратите внимание на то, что длина плечь диполя или длина полотна штыря не имеют значения, так как у антенны нет резонансов. Длина полотна, в данном случае влияет только на КПД. Попытки просчитать характеристики антенны в MMANA, не удались. Видимо, программа не может правильно расчитывать этот тип антенн, косвенно это подтверждает файл с расчетом TTFD, результаты которого очень сомнительны.

    Я пока не проверял, но предполагаю (по аналогии с TTFD) , что для увеличения эффективности антенны, нужно добавить несколько резонансных противовесов, увеличить длину луча до 20 - 40 метров и более (если вас интересуют диапазоны 1.9 и 3.6МГц) .

    Вариант с трансформатором
    Поработав на всех КВ-УКВ диапазонах на описанном выше варианте, я немного переделал конструкцию, добавив в нее трансформатор 1:9 и нагрузочный резистор 450ом. Теоретически, КПД антенны должно стать больше. Изменения в конструкции и подключения, вы видите на рисунке. При измерении равномерности перекрытия, прибором MFJ, был виден завал на частотах от 15мгц и выше (связано это с неудачной маркой ферритового кольца) , с реальной антенной этот завал остался, но КСВ был в пределах нормы. От 1.8 до 14мгц КСВ 1.0, от 14 до 28мгц он плавно увеличивался до 2.0. На УКВ диапазонах, этот вариант не работает, из- за большого КСВ.

    Тестирование антенны в реальном эфире, дало следующие результаты: Шум эфира при переходе с удлинненной GP на широкополосную антенну, уменьшался с 6-8 баллов, до 5-7 баллов. При работе на передачу мощностью 60Вт, в диапазоне 7мгц, были получены следующие рапорта:
    RA3RJL, 59+ широкополосная, 59+ удиненный GP
    UA3DCT, 56 широкополосная, 59 удиненный GP
    RK4HQ, 55-57 широкополосная, 58-59 удиненный GP
    RN4HDN, 55 широкополосная, 57 удиненный GP

    На страничке F6BQU , в самом низу, описана аналогичная антенна с нагрузочным резистором. Статья на французском языке. Итак цель достигнута, я сделал антенну работающую на всех КВ и УКВ диапазонах, не требующую согласования. Теперь можно работать в эфире и слушать его, лежа на диване, а диапазоны переключать только кнопкой на радиостанции. Лень правит миром. хи. Присылайте ваши отзывы......

    Вариант номер три
    Я опробовал еще один вариант, широкополосного согласования антенны. Это классический несимметричный трансформатор 1:9, нагруженный на резистор 450ом с одной стороны и кабель 50ом с другой. Длина луча не имеет особого значения, но в отличии от предыдущей конструкции, важно чтобы она не попадала в резонанс ни на одном любительском диапазоне (например 23 или 12 метров) . тогда КСВ будет везде хорошим. Трансформатор мотается на ферритовом кольце, тремя сложенными вместе проводами, у меня получилось 5 витков, которые нужно равномерно расположить по окружности кольца.
    Нагрузочный резистор можно сделать составным, например 15шт по 6к8 резисторов типа МЛТ-2, обеспечат вам возможность работать в CW и SSB мощностью до 100Вт. В качесте заземления можно использовать лучь любой длины, водопроводные трубы, вбитый в землю кол и тд. Готовая конструкция помещается в коробочку из которой выходит разьем PL для кабеля и две клеммы для луча и заземления. Диапазон рабочих частот 1.6 - 31МГц.

    При работе приобретённого импортного трансивера в паре со своим старым, надёжным усилителем мощности (РА), служившим верой и правдой владельцу в течение долгих лет, часто возникает ситуация, когда сбрасывается мощность возбуждения РА. Причина в большом входном сопротивлении РА, отличающимся от выходного сопротивления трансивера.

    К примеру, входное сопротивление РА с ОС:

    на 3- х лампах ГУ-50 около 85 Ом; на 4-х лампах Г-811 около 75 Ом;

    на ГК-13 около 375 Ом;

    на ГК-71 около 400 Ом;

    на двух ГК-71 около 200 Ом;

    на ГУ-81 около 200-1000 Ом.

    (Данные взяты из описаний конструкций РА в радиолюбительской литературе).

    К тому же, входное сопротивление РА неодинаково по диапазонам и реагирует на изменения настройки выходной цепи. Так, для РА на лампе ГУ-74Б приводятся такие данные по входному сопротивлению: 1,9МГц – 98 Ом;

    3,5 МГц – 77 Ом;

    7 МГц – 128 Ом;

    14 МГц – 102 Ом;

    21 МГц – 54 Ом;

    28 МГц – 88 Ом.

    Кроме того, входное сопротивление РА с ОС изменяется в течение периода ВЧ колебаний от нескольких десятков и сотен Ом до нескольких кОм.

    Из приведённых цифр видно, что согласование трансивера с РА явно необходимо. Обычно такое согласование выполняют с помощью или параллельных LC контуров, или П-контуров, устанавливаемых на входе лампы. Способ, безусловно, хорош, даёт согласование с КСВ не хуже 1,5, но требуется 6-9 контуров и две галеты переключателей.

    Но их не всегда можно разместить в имеющемся старом РА: нет места и всё тут. Выбрасывать старый, хороший РА - жалко, а делать новый – хлопотно.

    В зарубежной военной, гражданской, да и любительской радиоаппаратуре давно и широко используются для согласования 50-омных блоков широкополосные ВЧ трансформаторы. Они позволяют согласовывать эти блоки с другими цепями с сопротивлением, отличающимся от 50 Ом и лежащим в пределах 1 – 500 Ом. Такие широкополосные согласующие ВЧ трансформаторы можно использовать и для согласования трансиверов с РА. Они имеют небольшие размеры и всегда можно найти место для их размещения в корпусе (в подвале шасси) старого РА.

    На рис 1а. представлена схема ВЧ трансформатора на тороидальном ферритовом сердечнике с коэффициентом трансформации со

    противлений 1 ׃ │≥ 1…≤ 4 │ , зависящим от точки подключения отвода для выхода.

    Рис.1

    А на рис.1b – схема ВЧ трансформатора с коэффициентом трансформации сопротивлений 1 ׃ │ ≥4…≤9 │ , также в зависимости от точки подключения отвода для выхода.

    Для выходной мощности трансивера до 100 Вт в качестве тороидального сердечника можно использовать два сложенных вместе ферритовых кольца размером 32 х 16 х 8 проницаемостью около 1000, или большего диаметра, но не с меньшим поперечным сечением сердечника.

    Если входное сопротивление РА меньше 200 Ом, то намотка трансформатора выполняется по схеме рис.1а, а если – больше 200 Ом, но меньше 450 Ом, то – по схеме рис.1b.

    Если же входное сопротивление РА неизвестно, следует изготовить трансформатор по второй схеме, который, в случае плохого согласования, можно переключить на первый вариант. Для этого нужно будет среднюю обмотку отключить, а крайние соединить, как на рис.1а.

    Обмотки трансформатора выполняются одновременно для первого варианта двумя, а для второго - тремя проводами, слегка перекрученными, сделав 8 витков. При этом от каждого витка одного провода делается отвод в виде колечка (скрутки). Затем начало одной обмотки соединяется с концом второй, а начало второй обмотки соединяется с концом третьей, у которой сделаны отводы. Провод ПЭТВ диаметром 0,72… 0,8 мм. Кольца (кольцо) надо предварительно обмотать лентой из фторопласта или лакоткани.

    На фото №1 видно два ВЧ трансформатора, выполненных по второму варианту.

    Фото №1.

    Один трансформатор выполнен без скрутки проводов (в один ряд), распаян отводами на галете переключателя, другой (меньшего размера) – со скруткой проводов, оба трансформатора имеют по 9 отводов (7 от обмотки и плюс 2 крайних).

    Результаты испытаний трансформаторов .

    1. Трансформатор без скрутки проводов. Входное сопротивление 50 Ом. Выходное сопротивление трансформируется в следующие значения (начиная от точки соединения 2 и 3 обмоток) по отводам 200 Ом; 220 Ом; 250 Ом; 270 Ом; 300 Ом; 330 Ом; 360 Ом; 400 Ом; 450 Ом. (Цифры ориентировочные). КСВ по диапазонам (по всем отводам): на 3.5 МГц; 7 МГц; 14 МГц не более 1,3; на 21 МГц не более 1,5; на 28 МГц - 1,8 (до 300 Ом), а далее КСВ ≥ 2.

    При включении этого трансформатора по первому варианту (с отключённой средней обмоткой) выходное сопротивление трансформируется в следующие значения: 50,70, 80, 90, 100, 120, 140, 170, 200 (Ом). КСВ на всех диапазонах (по всем отводам) не больше 1.4.

    2.Трансформатор со скруткой проводов показал лучшие результаты. Выходные сопротивления такие же, как и у первого трансформатора, но КСВ значительно меньше: на диапазонах 3,5; 7: 14 МГц не более 1,2; на 21 МГц – не более 1,4; на 28 МГц – 1,5 - 1,65. При включении трансформатора по первой схеме КСВ ещё лучше.

    Трансформатор включается в разрыв меду входным разъёмом РА и переходным конденсатором, идущим к лампе (к катоду). Если есть возможность, то нужно установить галетный переключатель. В этом случае потребуется подобрать 2 – 3 позиции, при которых на всех диапазонах будет получен наименьший КСВ. Если такой возможности нет, то придётся искать компромисс, нужно будет найти один отвод от обмотки трансформатора с приемлемым КСВ на всех диапазонах. Подбирать отвод и измерять КСВ следует для работы РА в режиме рабочей мощности.

    Для согласования трансивера с РА можно использовать простые согласующие устройства на базе Г-фильтра по схеме на рис.2, в виде отдельного блока, включаемого между трансивером и РА короткими отрезками ВЧ кабелей. (Можно с встроенным КСВ - метром).


    Рис.2

    Катушка бескаркасная – 34 витка, наматывается на оправке диаметром 22 мм проводом 1.0 мм. Отводы от входа сделаны через 2 +.2 + 2 +3 + 3 + 3 + 4 + 4 + 5 и ещё 6 витков. Катушка изгибается полудугой и короткими отводами припаивается к контактам галетного переключателя.

    В положении переключателя 1 катушка закорачивается (включается «обход»), а в положении 11 подключается вся катушка. Конденсатор, сдвоенный от ламповых приёмников. Вместо переменного конденсатора можно подобрать для каждого диапазона постоянные, переключаемые с помощью второй галеты. Такое СУ позволяет согласовать трансивер и РА с входным сопротивлением 60 – 300 Ом. (Фото №2).

    Фото №2

    Но СУ в виде отдельного блока имеют существенный недостаток: в режиме приёма, когда в РА включается «обход», выход СУ оказывается рассогласованным с антенной. Однако это не сказывается в значительной мере на уровне принимаемого сигнала, т.к. обычно низкоомное сопротивление антенны нагружается на более высокоомный, теперь уже (для антенны) вход СУ.

    При настройке переключать галетник необходимо только при выключенной передаче!

    Литература

    1. Э. Рэд. Справочное пособие по высокочастотной схемотехнике.- Мир. c.10 – 12.

    2. С. Г.Бунин, Л. П. Яйленко , Справочник радиолюбителя – коротковолновика. – Киев, Техника, 1984. с.146.

    3.В. Семичев . ВЧ трансформаторы на ферритовых магнитопроводах. – Радио, 2007, №3, с.68 – 69.

    4. А. Тарасов . А вы применяете согласующее устройство? – КВ и УКВ, 2003, №4, №5.

    5 .Я. С.Лаповок. Я строю КВ радиостанцию – Москва, Патриот, 1992. с. 137, с. 153.

    В. Костычев, UN8CB

    г. Петропавловск.

    Опыт многочисленных контактов и общения с пользователями транзисторной техники, говорит о том, что редко какой радиолюбитель, не занимающийся постоянно конструированием, делает попытки разобраться в вопросах согласования трансивера с нагрузкой. Мысли о согласовании в таких головах начинают возникать только после случившейся аварии в аппаратуре. Ничего не поделать - реалии сегодняшнего таковы… Экзамены при получении категорий до сих пор не стали популярны, в лучшем случае - это сдача телеграфной азбуки. Хотя для современных условий на мой взгляд более целесообразно проверять именно техническую грамотность - поменьше было бы «групповух для работы на даль» и «рассусоливаний» по поводу преимуществ UW3DI перед «всякими Айкомами и Кенвудами»… Хотелось бы акцентировать внимание счастливых пользователей буржуинской техники без антенных тюнеров, да и самодеятельных конструкторов тоже, на этом очень важном вопросе.

    Выбор зависит от применяемых на станции антенн. Если входные сопротивления излучающих систем не опускаются ниже 50Ом, можно обойтись примитивным согласующим устройством Г-образного типа, Рис.1

    т.к. оно работает только в сторону повышения сопротивления. Для того чтобы это же устройство «понижало» сопротивление, его нужно будет включить наоборот, поменять местами вход и выход. Автоматические антенные тюнеры почти всех импортных трансиверов выполнены по схеме Рис.2.

    Антенные тюнеры в виде отдельных устройств фирмы изготавливают чаще по схеме, Рис.3

    С помощью двух последних схем можно обеспечить КСВ=1 практически на любой кусок провода. Не нужно забывать, что КСВ=1 говорит о том, что передатчик имеет оптимальную нагрузку, но это ни в коей мере не характеризует эффективную работу антенны. С помощью СУ по схеме Рис.2 можно согласовать щуп от тестера в качестве антенны с КСВ=1, но кроме ближайших соседей эффективность работы такой "антенны" никто не оценит. В качестве СУ можно использовать и обычный П-контур, Рис.4

    его преимущество - не нужно изолировать конденсаторы от корпуса, недостаток - при большой выходной мощности трудно найти переменные конденсаторы с требуемым зазором. По СУ Рис.3 есть информация в стр.237. Во всех фирменных СУ в этой схеме есть дополнительная катушка L2, она бескаркасная, провод диаметром 1,2-1,5мм, 3 витка, оправка диаметром 25мм, длина намотки 38мм. При применении на станции более-менее диапазонных антенн и если не предполагается работа на 160м, индуктивность катушки может не превышать 10-20мкГн. Очень важен момент получения индуктивностей малых значений, до 1-3 мкГн. Шаровые вариометры для этих целей обычно не подходят, т.к. индуктивность перестраивается в меньших пределах, чем у катушек с "бегунком". В фирменных антенных тюнерах применяются катушки с "бегунком" у которых первые витки намотаны с увеличенным шагом - это сделано для получения малых индуктивностей с максимальной добротностью и минимальной межвитковой связью. Достаточно качественное согласование можно получать при применении "вариометра бедного радиолюбителя". Это две последовательно включенные катушки с переключением отводов, Рис.5.

    Катушки бескаркасные, намотаны на оправке диаметром 20мм, провод диаметром 0,9-1,2мм (в зависимости от предполагаемой мощности), по 35 витков. Затем катушки сворачиваются в кольцо и своими отводами припаиваются на выводы обычных керамических переключателей на 11 положений. Отводы у одной катушки следует сделать от чётных витков, у другой от нечётных, например - от 1,3,5,7,9,11,15,19,23,27-го витков и от 2,4,6,8,10,14,18,22,28,30-го витков. Включив две такие катушки последовательно, можно переключателями подобрать требуемое количество витков, тем более что для СУ не особенно важна точность подбора индуктивности. С главной задачей - получением малых индуктивностей, "вариометр бедного радиолюбителя" справляется успешно. Кстати, в тюнере такого дорогого ТRХ как TS-940 применяется всего лишь 7 отводов, а автоматических антенных тюнерах AT-130 от ICOM - 12 отводов, АТ-50 от Kenwood - 7 отводов - поэтому не подумайте, что описываемый здесь вариант - «примитив, который не заслуживает Вашего внимания». В нашем случае имеем даже более «крутой» вариант - соответственно более точную настройку - 20 отводов. Зазоры между пластинами в КПЕ должны выдерживать предполагаемое напряжение. Если применяются низкоомные нагрузки, можно обойтись КПЕ от старых типов РПУ, при выходной мощности до 200-300Вт. Если высокоомные - придётся подобрать КПЕ от радиостанций с требуемыми зазорами. Расчёт простой - 1мм выдерживает 1000В, предполагаемое напряжение можно найти из формулы Р=U`(в квадрате) /R, где Р - мощность, R - сопротивление нагрузки, U - напряжение. Обязательно на радиостанции должен быть переключатель, при помощи которого трансивер отключается от антенны в случае грозы или нерабочем состоянии, т.к. более 50% случаев выхода из строя транзисторов связаны с наводкой статического электричества. Его можно ввести или в щиток переключение антенн или в СУ.

    Описание согласующего устройства.

    Как итог различных опытов и экспериментов по этой теме привели автора к схеме П-образного «согласователя».

    Конечно, сложно избавиться от «комплекса схемы буржуинских тюнеров» (Рис.2) - эта схема имеет важное преимущество - антенна (по крайней мере, центральная жила кабеля) гальванически развязана от входа трансивера через зазоры между пластинами КПЕ. Но безрезультатные поиски подходящих КПЕ для этой схемы вынудили отказаться от неё. Кстати, схему П-контура используют и некоторые фирмы, выпускающие автоматические тюнеры - та же американская KAT1 Elekraft или голландская Z-11 Zelfboum. Помимо согласования П-контур выполняет ещё и роль фильтра нижних частот, что весьма неплохо для перегруженных радиолюбительских диапазонов, наверное, вряд ли кто-то откажется от дополнительной фильтрации ненужных гармоник. Главный недостаток схемы П-контура - это потребность в КПЕ с достаточно большой максимальной ёмкостью, что меня наводит на мысль, почему и не применяются такие схемы в автоматических тюнерах импортных трансиверов. В Т-образных схемах чаще всего используются два КПЕ перестраиваемые моторчиками и понятно, что КПЕ на 300пф будет намного меньше размером, дешевле и проще, нежели КПЕ на 1000пф. В СУ применены КПЕ от ламповых приёмников с воздушным зазором 0,3мм, обе секции включены параллельно. В качестве индуктивности применена катушка с отводами, переключаемыми керамическим галетным переключателем. Катушка бескаркасная 35 витков провода 0,9-1,1мм намотана на оправке диаметром 21-22мм, свёрнута в кольцо и своими короткими отводами припаяна к выводам галетного переключателя. Отводы сделаны от 2,4,7,10,14,18,22, 26,31 витков. КСВ-метр изготовлен на ферритовом кольце. Для КВ решающего значения проницаемость кольца в общем-то не имеет - применено кольцо К10 проницаемостью 1000НН. Оно обмотано тонкой лакотканью и на неё намотано 14 витков в два провода без скрутки ПЭЛ 0,3, начало одной обмотки, соединённое с концом второй образуют средний вывод. В зависимости от требуемой задачи, точнее от того какую мощность предполагается пропускать через это СУ и качества излучающих светодиодов, детектирующие диоды D2,D3 можно использовать кремниевые или германиевые. От германиевых диодов можно получить бОльшие амплитуды и чувствительность. Наилучшие - ГД507. Но так как автор применяет трансивер с выходной мощностью не менее 50Вт, достаточно и обычных кремниевых КД522. Как «ноу хау» в этом СУ применена светодиодная индикация настройки помимо обычной на стрелочном приборе. Для индикации «прямой волны» применён зелёного цвета светодиод AL1, а для визуального контроля за «обратной волной» - красного цвета AL2. Как показала практика - это решение очень удачно - всегда можно оперативно отреагировать на аварийную ситуацию - если что-то случается во время работы с нагрузкой красный светодиод начинает ярко вспыхивать в такт с передатчиком, что не всегда так заметно по стрелке КСВ-метра. Не будешь же постоянно пялиться на стрелку КСВ-метра во время передачи, а вот яркое свечение красного света хорошо видно даже боковым зрением. Это положительно оценил RU6CK когда у него появилось такое СУ (к тому же у Юрия плохое зрение). Уже более года и сам автор использует в основном только «светодиодную настройку» СУ - т.е. настройка сводится к тому, чтобы погас красный светодиод и ярко полыхал зелёный. Если уж и захочется более точной настройки - можно по стрелке микроамперметра её «выловить». Настройка прибора выполняется с использованием эквивалента нагрузки на который рассчитан выходной каскад передатчика. Присоединяем СУ к TRX минимальной (насколько это возможно - т.к. этот кусок в дальнейшем и будет задействован для их соединения) длины коаксиалом с требуемым волновым сопротивлением, на выход СУ без всяких длинных шнурков и коаксиальных кабелей эквивалент, выкручиваем все ручки СУ на минимум и выставляем при помощи С1 минимальные показания КСВ-метра при «отражёнке». Следует заметить - выходной сигнал для настройки не должен содержать гармоник (т.е. должен быть фильтрованный), в противном случае минимума не найдётся. Если конструкция будет выполнена правильно - минимум получается в районе минимальной ёмкости С1. Меняем местами вход-выход прибора и снова проверяем «баланс». Проверяем настройку на нескольких диапазонах - если всё ОК, тогда настройка на минимум совпадёт в различных положениях. Если не совпадает или не «балансируется» - ищите более качественное «масло» в голову изобретателя… Только слёзно прошу - не задавайте автору вопросов по теме как делать или настраивать такое СУ - можете заказать готовое, если не получается сделать самостоятельно. Светодиоды нужно выбрать из современных с максимальной яркостью свечения при максимальном сопротивлении. Мне удалось найти красные светодиоды сопротивлением 1,2кОм и зелёные 2кОм. Обычно зелёные светятся слабо - но это и неплохо - ёлочную гирлянду не делаем. Главная задача, чтобы он достаточно отчётливо светился в штатном режиме на передачу трансивера. А вот красный в зависимости от целей и предпочтений пользователя можно выбрать от ядовито-малинового до алого. Как правило - это светодиоды диаметром 3-3,5мм. Для более яркого свечения красного применено удвоение напряжения - введён диод D1. Из-за этого точным измерительным прибором наш КСВ-метр уже не назовёшь - он завышает «отражёнку» и если захочется вычислить точное значение КСВ - придётся это учитывать. Если есть потребность именно в измерении точных значений КСВ - нужно применить светодиоды с одинаковым сопротивлением и сделать два плеча КСВ-метра абсолютно одинаковыми - или с удвоением напряжения оба или без него оба. Только в этом случае получим одинаковое значение напряжений, поступающее от плеч Тр до МА. Но скорее нас более волнует не какой именно имеем КСВ, а то, чтобы цепь TRX-антенна была согласована. Для этого вполне достаточно показаний светодиодов. Это СУ эффективно при применении с антеннами несимметричного питания через коаксиальный кабель. Автором проведены испытания на «стандартные» распространённые антенны «ленивых» радиолюбителей - рамку периметром 80м, Инвертед-V совмещённые 80 и 40м, треугольник периметром 40м, пирамиду на 80м. Константин RN3ZF такое СУ применяет со штырём, Инвертед-V в том числе и на WARC диапазонах, у него FT-840. UR4GG применяет с треугольником на 80м и трансиверами «Волна» и «Дунай». UY5ID согласовывает ШПУ на КТ956 с многосторонней рамкой периметром 80м с симметричным питанием, использует дополнительный «переход» на симметричную нагрузку. Если при настройке не удаётся погасить красный светодиод (достичь минимальных показаний прибора) это может говорить о том, что помимо основного сигнала в излучаемом спектре есть ещё составляющие и СУ не в состоянии пропустить их и согласовать одновременно на всех излучаемых частотах. И те гармоники, которые лежат выше основного сигнала по частоте, не проходят через ФНЧ, образуемый элементами СУ отражаются и на обратном пути «поджигают» красный светодиод. О том, что СУ не «справляется» с нагрузкой может говорить лишь только тот факт, что согласование происходит при крайних значениях (не минимальных) параметров КПЕ и катушки - т.е. не хватает ёмкости или индуктивности. Ни у кого из пользователей на перечисленные антенны ни на одном из диапазонов таких случаев не отмечено. Испытано применение СУ с «верёвкой» - проводом длиной 41м. Не следует забывать, что КСВ-метр является измерительным прибором только в случае обеспечения с обеих его сторон нагрузки при которой он балансировался. При настройке на «верёвку» светятся оба светодиода и за точку отсчёта можно взять максимально яркое свечение зелёного при минимально возможном красного. Можно предположить, что это будет наиболее верная настройка - на максимум отдачи в нагрузку. Ещё хотелось бы отметить - ни в коем случае нельзя переключать отводы катушки при излучении максимальной мощности. В момент переключения происходит разрывание цепи (хотя и на доли секунды) - резко меняется индуктивность - соответственно подгорают контакты галетного переключателя и резко меняется нагрузка трансиверу. Переключение галетного переключателя нужно производить при переводе трансивера на RX. В качестве микроамперметра применён прибор М68501 с током полного отклонения 200мка. Можно применить и М4762 - их применяли в магнитофонах «Нота», «Юпитер». Понятно, что С1 должен выдерживать напряжение выдаваемое трансивером в нагрузке. Информация для дотошных и «требовательных» читателей - автор осознаёт, что такого типа КСВ-метр не является прецизионным высокоточным измерительным прибором. Но изготовления такого устройства и не ставилось. Основная задача была - обеспечить трансиверу с широкополосными транзисторными каскадами оптимальную согласованную нагрузку, ещё раз повторю - как передатчику, так и приёмнику. Приёмник в той же полной мере нуждается в качественном согласовании с антенной, как и мощный ШПУ! Кстати, если в вашем «радиве» оптимальные настройки для приёмника и передатчика не совпадают - это говорит о том, что настройка или вообще толком не производилась, а если и производилась - то, скорее всего только передатчика и полосовые фильтры приёмника имеют оптимальные параметры при других значениях нагрузок, нежели это было отлажено на передатчике. Задача нашего КСВ-метра - показать, что кручением ручек СУ мы добились тех параметров нагрузки, которую присоединяли к выходу ANTENNA во время настройки. И можем спокойно работать в эфире, зная, что теперь трансивер не «пыжится и молит о пощаде», а имеет почти ту же нагрузку, на которую его и настраивали. Это, конечно, не говорит о том, что ваша антенна от этого СУ стала работать лучше, не нужно забывать об этом! Для страждущих о прецизионном КСВ-метре могу рекомендовать его изготовить по схемам, приведённым во многих зарубежных серьёзных изданиях или купить готовый прибор. Но придётся раскошелиться - действительно приборы от известных фирм стоят от 50$ и выше, СВ-ишные польско-турецко-итальянские не беру во внимание.

    Антенные согласующие устройства. Тюнеры

    АСУ. Антенные тюнеры. Схемы. Обзоры фирменных тюнеров


    В радиолюбительской практике не так часто можно встретить антенны, в которых входное сопротивление является равным волновому сопротивлению фидера, а также выходному сопротивлению передатчика.

    В преимущественном большинстве случаев обнаружить такое соответствие не удается, поэтому приходиться использовать специализированные антенные согласующие устройства. Антенна, фидер и выход передатчика (трансивера) входят в единую систему, в которой энергия передаётся без каких-либо потерь.

    Нужен ли вам антенный тюнер?

    От Алексея RN6LLV:

    В данном видео я расскажу начинающим радиолюбителям об антенных тюнерах.

    Для чего нужен антенный тюнер, как его грамотно использовать совместно с антенной, и какие типичные заблуждения о применении тюнера бытуют у радиолюбителей.

    Речь идёт о готовом изделии - тюнере (произведённом фирмой), если есть желание построить собственный, сэкономить или поэкспериментировать - то можно видео пропустить и см. далее (ниже).

    Совсем внизу - обзоры фирменных тюнеров.


    Антенный тюнер, антенный тюнер купить, цифровой тюнер +с антенной, автоматический антенный тюнер, антенный тюнер mfj, кв антенные тюнера, антенный тюнер +своими руками, антенный тюнер кв диапазона, схема антенного тюнера, а нтенный тюнер LDG, ксв метр

    Вседиапазонное согласующее устройство (с раздельными катушками)

    Переменные конденсаторы и галетный переключатель от Р-104 (блок БСН).

    При отсутствии указанных конденсаторов, можно применить 2-секционные, от вещательных радиоприемников, включив секции последовательно и изолировав корпус и ось конденсатора от шасси.

    Также можно применить обычный галетный переключатель, заменив ось вращения на диэлектрическую (стеклотекстолит).

    Данные контурных катушек тюнера и комплектующих:

    L-1 2,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-2 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-3 3,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-4 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-5 3,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-6 4,5 витка, провод AgCu 2 мм, наружный диаметр катушки 18 мм.

    L-7 5,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

    L-8 8,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

    L-9 14,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

    L-10 14,5 витка, провод ПЭВ 2,2 мм, наружный диаметр катушки 30 мм.

    Источник: http://ra1ohx.ru/publ/skhemy_radioljubitelju/soglasujushhie_ustrojstva_antennye_tjunery/vsediapazonnoe_su_s_razdelnymi_katushkami/19-1-0-652


    Простое согласование антенны LW - "длинный провод"

    Нужно было срочно запустить 80 и 40 м в чужом доме, выхода на крышу нет, да и времени на установку антенны нет.

    Бросил с балкона третьего этажа на дерево полёвку чуть более 30 м. Взял кусок пластиковой трубы диаметром примерно 5 см, намотал порядка 80 витков провода диаметром 1 мм. Снизу сделал отводы через каждые 5 витков, а сверху через 10 витков. Собрал на балконе вот такое простейшее согласующее устройство.

    На стенку повесил индикатор напряжённости поля. Включил диапазон 80 м в режиме QRP, сверху катушки подобрал отвод и конденсатором настроил свою "антенну " в резонанс по максиму показаний индикатора, потом внизу подобрал отвод по минимуму КВС.

    Времени не было, а посему галетники не ставил. и по виткам "бегал " при помощи крокодильчиков. И вот на такой суррогат мне отвечала вся европейская часть России, особенно на 40 м. На мою полёвку даже никто не обратил внимания. Это конечно не настоящая антенна, но информация будет полезна.

    RW4CJH info - qrz.ru

    Согласующее устройство для антенн НЧ диапазонов

    Радиолюбители, проживающие в многоэтажных домах, нередко применяют на НЧ диапазонах рамочные антенны.

    Такие антенны не требуют высоких мачт (их можно натянуть между домами на сравнительно большой высоте), хорошего заземления, для их питания можно применить кабель, да и помехам они меньше подвержены.

    На практике удобен вариант рамки в виде треугольника, так как для ее подвески требуется минимальное число точек крепления.

    Как правило, большинство коротковолновиков стремятся использовать такие антенны в качестве много диапазонных, однако в этом случае крайне сложно обеспечить приемлемое согласование антенны с фидером на всех рабочих диапазонах.

    В течение более чем 10 лет я использую антенну типа "Дельта" на всех диапазонах от 3.5 до 28 МГц. Ее особенности - это расположение в пространстве и использование согласующего устройства.

    Две вершины антенны закреплены на уровне крыш пятиэтажных домов, третья (разомкнутая) - на балконе 3-го этажа, оба ее провода введены в квартиру и подключены к согласующему устройству, которое соединено с передатчиком кабелем произвольной длины.

    При этом периметр рамки антенны около 84 метров.

    Принципиальная схема согласующего устройства приведена на рисунке справа.

    Согласующее устройство состоит из широкополосного симметрирующего трансформатора Т1 и П-контура, образованного катушкой L1 с отводами и подключаемыми к ней конденсаторами.

    Один из вариантов выполнения трансформатора Т1 приведен на рис. слева.

    Детали. Трансформатор Т1 намотан на ферритовом кольце диаметром не менее 30 мм с магнитной проницаемостью 50- 200 (некритично). Обмотка выполняется одновременно двумя проводами ПЭВ-2 диаметром 0,8 - 1,0 мм, число витков 15 - 20.

    Катушка П-контура диметром 40...45 мм и длиной 70 мм выполнена из голого или эмалированного медного провода диаметром 2-2.5 мм. Число витков 13, отводы от 2; 2,5; 3; 6 витков, считая от левого по схеме вывода L1. Подстроенные конденсаторы типа КПК-1 собраны на шпильках в пакеты по 6 шт. и имеют емкость 8 - 30 пФ.

    Настройка. Для настройки согласующего устройства необходимо в разрыв кабеля включить КСВ метр. На каждом диапазоне согласующее устройство настраивается по минимуму КСВ с помощью подстроенных конденсаторов и при необходимости подбором положения отвода.

    Советую перед настройкой согласующего устройства отсоединить от него кабель и настроить выходной каскад передатчика, подключив к нему эквивалент нагрузки. После этого можно восстановить соединение кабеля с согласующим устройством и выполнить окончательную настройку антенны. Диапазон 80 метров целесообразно разбить на два поддиапазона (CW и SSB). При настройке легко добиться КСВ близкого к 1 на всех диапазонах.

    Данную систему можно использовать также на WARC диапазонах (надо только подобрать отводы) и на 160 м, соответственно увеличив число витков катушки и периметр антенны.

    Необходимо отметить, что все сказанное выше справедливо только при непосредственном подключении антенны к согласующему устройству. Конечно, данная конструкция не заменит "волновой канал" или "двойной квадрат" на 14 - 28 МГц, но она хорошо настраивается на всех диапазонах и снимает многие проблемы у тех, кто вынужден использовать одну многодиапазонную антенну.

    Вместо переключаемых конденсаторов можно применить КПЕ, но тогда придется каждый раз настраивать антенну при переходе на другой диапазон. Но, если дома такой вариант неудобен, то в полевых или походных условиях он вполне оправдан. Уменьшенные варианты "дельты" для 7 и 14 МГц я неоднократно применял при работе в "поле". При этом две вершины крепились на деревьях, а питающая подключалась к согласующему устройству, лежащему непосредственно на земле.

    В заключение могу сказать, что используя для работы в эфире только трансивер с выходной мощностью около 120 Вт без каких-либо усилителей мощности, с описанной антенной на диапазонах 3,5; 7 и 14 МГц никогда не испытывал затруднений, при этом работаю, как правило, на общий вызов.

    С. Смирнов, (EW7SF)

    Конструкция простого антенного тюнера

    Конструкция антенного тюнера от RZ3GI

    Предлагаю простой вариант антенного тюнера, собранного по Т-образной схеме.

    Опробованы совместно с FT-897D и антенной IV на 80, 40 m.

    Строится на всех КВ диапазонах.

    Катушка L1 намотана на оправке 40 мм с шагом 2 мм и имеет 35 витков, провод диаметром 1,2 - 1,5 мм, отводы (считая от "земли") - 12, 15, 18, 21, 24, 27, 29, 31, 33, 35 витков.

    Катушка L2 имеет 3 витка на оправке 25 мм, длина намотки 25 мм.

    Конденсаторы С1, С2 с Сmax = 160 пф (от бывшей УКВ станции).

    КСВ метр применяется встроенный (в FT - 897D)

    Антенна Inverted Vee на 80 и 40 метров - строится на всех диапазонах.

    Юрий Зиборов RZ3GI.

    Фото тюнера:

    «Z-match» антенный тюнер

    Под названием «Z-match» известно превеликое множество конструкций и схем, я бы даже сказал больше конструкций чем схем.

    Основа схемного решения от которого я отталкивался широко распространена в интернете и offline литературе, всё выглядит примерно так (см. справа):

    И вот, рассматривая множество различных схем, фотографий и заметок размещенных в сети, родилась у меня идея собрать и для себя антенный тюнер.

    Под рукой оказался мой аппаратный журнал (да, да, я приверженец старой школы - олдскул, как выражается молодёжь) и на его страничке родилась схема нового, для моей радиостанции прибора.

    Пришлось изъять страничку из журнала «для приобщения к делу»:

    Заметно, что имеют быть значительные отличия от первоисточника. Я не стал применять индуктивную связь с антенной с её симметричностью, для меня достаточно автотрансформаторной схемы т.к. питать антенны симметричной линией не планируется. Для удобства настройки и контроля за антенно-фидерными сооружениями я добавил в общую схему КСВ-метр и Ваттметр.

    Покончив с расчетами элементов схемы можно приступить к макетированию:



    Кроме корпуса приходится изготавливать и некоторые радиоэлементы, одной из немногих радиодеталей которую радиолюбитель может сделать сам это катушка индуктивности:

    А вот, что получилось в результате, внутри и снаружи:



    Еще не нанесены шкалы и обозначения, лицевая панель безлика и не информативна, но главное РАБОТАЕТ!! И это хорошо…

    R3MAV. info - r3mav.ru

    Согласующее устройство по аналогии Alinco EDX-1

    Эта схема антенного согласующего устройства заимствована мной с фирменного Alinco EDX-1 HF ANTENNA TUNER, который работал с моим DX-70.

    Детали:

    С1 и С2 300 пф. Конденсаторы с воздушным диэлектриком. Шаг пластин 3 мм. Ротор 20 пластин. Статор 19. Но можно применить сдвоенные КПЕ с пластиковым диэлектриком от старых транзисторных приёмников или с воздушным диэлектриком 2х12-495 пф. (как на снимке)

    Вы спросите: «А не прошьёт?». Дело в том, что коаксиальный кабель припаян непосредственно к статору, а это 50 Ом, и где должна проскочить искра при таком низком сопротивлении?

    Достаточно от конденсатора протянуть "голым" проводом линию длиной 7-10 см, как он сгорит синим пламенем. Для снятия статики конденсаторы можно зашунтировать резистором 15 кОм 2 W. (цитата из "Усилители мощности конструкции UA3AIC").

    L1 - 20 витков посеребренного провода Д=2.0 мм, бескаркасная Д=20 мм. Отводы, считая от верхнего по схеме конца:

    L2 25 витков, ПЭЛ 1.0, намотана на двух, сложенных вместе ферритовых кольцах, размером Д наруж.=32 мм, Д вн.=20 мм.

    Толщина одного кольца = 6 мм.

    (Для 3.5 МГц).

    L3 28 витков, а всё остальной как у L2 (Для 1.8 МГц).

    Но, к сожалению, в то время я не смог найти подходящих колец и поступил так: Выточил из оргстекла кольца и на них намотал провода до заполнения. Соединил их последовательно – это получился эквивалент L2.

    На оправке диаметром 18 мм (можно использовать пластиковую гильзу от охотничьего ружья 12 калибра) виток к витку намотал 36 витков – это получился аналог L3.

    На снимке все видно. И КСВ-метр тоже. КСВ метр из описания Тарасова А. UT2FW «КВ-УКВ» № 5 за 2003 год.

    Согласующее устройство для антенн дельта, квадрат, трапеция

    Среди радиолюбителей большую популярность имеет петлевая антенна периметром 84 м. В основном его настраивают на 80М диапазон и с небольшим компромиссом его можно использовать на всех радиолюбительских диапазонах. Такой компромисс можно принять если работаем ламповым усилителем мощности, но если имеем более современный трансивер, там дело уже не пойдет. Нужен согласующее устройство, который устанавливает КСВ на каждом диапазоне, соответствующий нормальной работе трансивера. HA5AG рассказывал мне за простое согласующее устройство и прислал мне краткое его описание (смотри рисунок). Устройство разработано для петлевых антенн практически любой формы (дельта, квадрат, трапеция, и.т.д.)

    Краткое описание:

    У автора согласующее устройство было опробовано на антенне, форма которого почти квадрат, установленная на высоте 13 м в горизонтальном положении. Входное сопротивление этой QUAD антенны на 80 м –ом диапазоне 85 Ом, а на гармониках 150 – 180 Ом. Волновое сопротивление питающего кабеля 50 Ом. Задача стояла согласовать этот кабель с входным сопротивлением антенны 85 – 180 Ом. Для согласования был применен трансформатор Tr1 и катушка L1.

    В диапазоне 80 м с помощью реле Р1 замыкаем накоротко катушку n3. В цепи кабеля остается включенным катушка n2, которая со своей индуктивностью ставит входное сопротивление антенны на 50 Ом. На остальных диапазонах Р1 отключен. В цепи кабеля включены катушки n2+n3 (6 витков) и антенна согласует 180 Ом на 50 Ом.

    L1 – удлиняющая катушка. Он найдет свое применение на диапазоне 30 м. Дело в том, что третья гармоника 80 м –го диапазона не совпадает с разрешенным диапазоном частоты 30 м –го диапазона. (3 х 3600 Кгц = 10800 Кгц). Трансформатор T1 согласует антенну на 10500 Кгц, но это еще мало, нужно включить и катушку L1 и в таком включении антенна уже будет резонировать на частоте 10100 Кгц. Для этого с помощью К1 включаем реле Р2, который при этом открывает свои нормально замкнутые контакты. L1 еще может послужить и в диапазоне 80 м, когда желаем работать в телеграфном участке. На 80 м–ом диапазоне полоса резонанса антенны около 120 Кгц. Для сдвига частоты резонанса можно включить L1. Включенная катушка L1 заметно снижает КСВ и на 24 Мгц частоте, а также на 10 м диапазоне.

    Согласующее устройство выполняет три функции:

    1. Обеспечивает симметричное питание антенны, так как полотна антенны изолирована по ВЧ от «земли» через катушки трансформатора Tr1 и L1.

    2. Согласует импеданс, описанным высшее способом.

    3. С помощью катушек n2 и n3 трансформатора Tr1 ставит резонанс антенны в соответствующие, разрешенные полосы частоты по диапазонам. Об этом немного подробнее: Если антенна изначально настроена на частоту 3600 кгц (без включения согласующего устройства), то на 40 м диапазоне будет резонировать на 7200 Кгц, на 20 м на 14400 Кгц, а на 10 м уже на 28800 Кгц. Это значит – антенну нужно удлинять в каждом диапазоне, и при этом чем высшее частота диапазона тем больше требует удлинения. Вот, как раз такое совпадение используется для согласования антенны. Катушки трансформатора n2 и n3, T1 c определенной индуктивностью, тем больше удлиняет антенну, чем высшее частота диапазона. Таким способом на 40 м катушки удлиняют в очень маленькой степени, а на 10 м диапазоне уже в значительной степени. Правильно настроенную антенну согласующее устройство ставит в резонанс на каждом диапазоне в районе первой 100 Кгц частоты.

    Положение выключателей К1 и К2 по диапазонам указаны в таблице (справа):

    Если входное сопротивление антенны на 80 м диапазоне устанавливается не в пределах 80 – 90 Ом а в пределах 100 – 120 Ом, то количество витков катушку n2 трансформатора T1 нужно увеличить на 3, а если сопротивление еще больше так на 4. Параметры остальных катушек остаются без изменений.

    Перевод: UT1DA источник - (http://ut1da.narod.ru) HA5AG

    КСВ-метр с согласующим устройством

    На рис. справа приведена принципиальная схема прибора, включающего в себя КСВ-метр, с помощью которого можно настроить Си-Би антенну, и согласующее устройство, позволяющее привести сопротивление настроенной антенны к Ra = 50 Ом.

    Элементы КСВ-метра: Т1 - трансформатор антенного тока, намотанный на ферритовом кольце М50ВЧ2-24 12х5х4 мм. Его обмотка I - продетый в кольцо проводник с антенным током, обмотка II - 20 витков провода в пластиковой изоляции, ее наматывают равномерно по всему кольцу. Конденсаторы С1 и С2 - типа КПК-МН, SA1 - любой тумблер, РА1 - микроамперметр на 100 мкА, например, М4248.

    Элементы согласующего устройства: катушка L1 - 12 витков ПЭВ-2 0,8, внутренний диаметр - 6, длина - 18 мм. Конденсатор С7 - типа КПК-МН, С8 -любой керамический или слюдяной, рабочее напряжение не менее 50 В (для передатчиков мощностью не более 10 вт). Переключатель SA2 - ПГ2-5-12П1НВ.

    Для настройки КСВ-метра его выход отключают от согласующего контура (в т. А) и соединяют с 50-омным резистором (два параллельно включенных резистора МЛТ-2 100 Ом), а ко входу подключают Си-Би радиостанцию, работающую на передачу. В режиме измерения прямой волны - в указанном на рис. 12.39 положении SA1 - прибор должен показать 70...100 мкА. (Это для передатчика мощностью 4 Вт. Если он мощнее, то "100" на шкале РА1 выставляют иначе: подбором резистора, шунтирующего РА1 при закороченном резисторе R5.)

    Переключив SA1 в другое положение (контроль отраженной волны), регулировкой С2 добиваются нулевых показаний РА1.

    Затем вход и выход КСВ-метра меняют местами (КСВ-метр симметричен) и эту процедуру повторяют, устанавливая в "нулевое" положение С1.

    На этом настройку КСВ-метра заканчивают, его выход подключают к седьмому витку катушки L1.

    КСВ антенного тракта определяют по формуле: КСВ=(А1+А2)/(А1-А2), где А1 - показания РА1 в режиме измерения прямой волны, а А2 - обратной. Хотя вернее было бы говорить здесь не о КСВ, как таковом, а о величине и характере антенного импеданса, приведенного к антенному разъему станции, о его отличии от активного Ra = 50 Ом.

    Антенный тракт будет настроен, если изменениями длины вибратора, противовесов, иногда - длины фидера, индуктивности удлиняющей катушки (если она есть) и др. будет получен минимально возможный КСВ.

    Некоторая неточность настройки антенны может быть компенсирована расстройкой контура L1C7C8. Это можно сделать конденсатором С7 или изменением индуктивности контура - например, введением в L1 небольшого карбонильного сердечника.

    Как показывает опыт настройки и согласования Си-Би антенн самых разных конфигураций и размеров (0,1...3L), под контролем и с помощью этого прибора нетрудно получить КСВ = 1... 1,2 в любом участке этого диапазона.

    Радио, 1996, 11

    Простой антенный тюнер

    Для согласования трансивера с различными антеннами можно с успехом применить простейший ручной тюнер, схема которого показана на рисунке. Он перекрывает диапазон частот от 1,8 до 29 мГц.Кроме того, этот тюнер может работать как простейший коммутатор антенн, имеющий еще и эквивалент нагрузки. Мощность, подводимая к тюнеру, зависит от от зазора между пластинами применяемого конденсатора переменной емкости С1 – чем он больше, тем лучше. С зазором 1,5-2 мм тюнер выдерживал мощность до 200 Вт (может и больше – для дальнейших экспериментов мощности моего TRX не хватило). На входе тюнера для измерения КСВ можно включить один из КСВ-метров, хотя при совместной работе тюнера с импортными трансиверами это не обязательно - все они имеют встроенную функцию измерения КСВ (SVR). Два (или больше) ВЧ разъема типа PL259 позволяют подключить антенну, выбранную с помощью галетного переключателя S2 «Коммутатор антенн» для работы с трансивером. Этот же переключатель имеет положение «Эквивалент», при котором трансивер может быть подключен к эквиваленту нагрузки сопротивлением 50 Ом. С помощью релейной коммутации можно включить режим «Обход» и антенна или эквивалент (в зависимости от положения коммутатора антенн S2) будут напрямую подсоединены к трансиверу.

    В качестве С1 и С2 применяются стандартные КПЕ-2 своздушным диэлектриком 2х495 пФ от промышленных бытовых приемников. Их секции продернуты через одну пластину. В С1 задействованы две секции, соединенные параллельно. Он установлен на пластине из оргстекла толщиной 5 мм. В С2 – задействована одна секция. S1 – галетный ВЧ переключатель на 6 положений (2Н6П галеты из керамики, их контакты соединены параллельно). S2 - такой же, но на три положения (2Н3П, или на большее число положений в зависимости от количества антенных разъемов). Катушка L2 - намотана голым медным проводом d=1мм (лучше посеребренный), всего 31 виток, намотка с небольшим шагом, внешний диаметр 18 мм, отводы от 9 + 9 + 9 + 4 витка. Катушка L1 -тоже, но 10 витков. Катушки установлены взаимно-перпендикулярно. L2 можно припаять выводами к контактам галетного переключателя, изогнув катушку полукольцом. Монтаж тюнера проводится короткими толстыми (d=1,5-2 мм) отрезками голого медного провода. Реле типа ТКЕ52ПД от радиостанции Р-130М. Естественно, оптимальным вариантом является применение более высокочастотных реле, например, типа РЭН33. Напряжение для питания реле получено от простейшего выпрямителя, собранного на трансформаторе ТВК-110Л2 и диодном мосту КЦ402 (КЦ405) или им подобным. Коммутация реле осуществляется тумблером S3 "Обход" типа МТ-1, установленном на лицевой панели тюнера. Лампа La (не обязательна) служит индикатором включения. Может оказаться, что на низкочастотных диапазонах не хватает емкости С2. Тогда параллельно С2 можно с помощью реле Р3 и тумблера S4 подключать или его вторую секцию или дополнительные конденсаторы (подобрать 50 – 120 пФ - на схеме показано пунктиром).

    По рекомендации, оси КПЕ соединены с ручками управления через отрезки дюритового бензошланга, служащие изоляторами. Для их фиксации использованы водопроводные хомутики d=6 мм. Тюнер был изготовлен в корпусе от набора «Электроника-Контур-80». Несколько бОльшие размеры корпуса, чем у тюнера, описанного в , оставляют достаточный простор для доработок и модификаций данной схемы. Например, ФНЧ на входе, согласующий симметрирующий трансформатор 1:4 на выходе, вмонтированный КСВ-метр и другие. Для эффективной работы тюнера не следует забывать о хорошем его заземлении.

    Простой тюнер для настройки симметричной линии

    На рисунке приведена схема простого тюнера для согласования симметричной линии. В качестве индикатора настройки используется светодиод.

    © 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw