Электронное оборудование самолета. Авионика – что это такое

Главная / Ходовая часть

Бортовое радиоэлектронное оборудование истребителя F-35

Майор Г. Антонов

В Соединенных Штатах осуществляется полномасштабная разработка перспективного тактического истребителя по программе JSF (Joint Strike Fighter), который получил официальное обозначение F-35. Главной ее целью является создание нового боевого самолета с высокими тактико-техническими характеристиками и единой конструкцией для ВВС, авиации ВМС и морской пехоты США. Он станет основным самолетом тактической авиации и заменит состоящие в настоящее время на вооружении тактические истребители (F-16 «Файтинг Фалкон», F/A-18 «Хорнет») и штурмовики (А-10 «Тандерболт» и AV-8B «Харриер-2»).
При разработке бортового радиоэлектронного оборудования (БРЭО) самолета специалисты использовали результаты перспективных исследований в области оптоэлектронного (ОЭ) и радиолокационного оборудования, индивидуальных средств радиоэлектронной борьбы (РЭБ), а также ЭВМ и программного обеспечения. Эти машины имеют высокую степень интеграции датчиков с возможностью обмена разведывательными данными и информацией о радиоэлектронной обстановке, что позволит каждому пилоту ориентироваться в обстановке на всем театре военных действий. Кроме этого, для снижения нагрузки пилота был установлен принципиально новый интерфейс с возможностью голосового управления самолетом.
На стадии начального проектирования планировалось, что истребитель не будет иметь активных средств разведки и пилот будет получать информацию со специальных разведывательных самолетов, спутников и от других источников. Эта мера позволила бы снизить затраты на его оборудование, однако в связи с развитием элементной базы было подсчитано, что содержание отдельных разведывательных самолетов обойдется дороже и будет менее ко эффективно, чем оснащение истребителей разведывательным оборудованием. Кроме того, большое число самолетов с чувствительными датчиками, связанными высокоскоростными линиями передачи данных, позволит обеспечить полное информационное превосходство над полем боя.
Радиолокационная станция (РЛС) четвертого поколения и комплекс РЭБ самолета F-35 (рис. 2) объединены в многофункциональную интегрированную систему (МИС). На станции будет установлена активная фазированная антенная решетка (АФАР), за основу которой взята антенна станции APG-77. Это позволит использовать ее для радиолокационной и радиотехнической разведки, РЭБ и связи.
АФАР состоит из 1 000-1 200 приемопередающих модулей (ППМ), связанных высокоскоростными процессорами. На разные ППМ в раскрыве антенны могут возлагаться различные задачи. В связи с тем что диаметр антенны ограничен размерами фюзеляжа, общее число ППМ уменьшается на треть (по сравнению с АФАР APG-77), что приводит к снижению дальности обнаружения целей до 165 км. Станция должна работать в диапазоне частот 8-12,5 ГГц (по некоторым данным, 6-18 ГГц).

Такая широкополосность будет обеспечиваться варьированием размеров и форм излучателей ППМ и позволит одновременно формировать две диаграммы направленности (на разной частоте), обеспечивая работу РЛС в следующих режимах:
- обнаружения и сопровождения воздушных и наземных целей;
- пассивного пеленгования наземных РЛС;
- передачи сигналов коррекции на УР класса «воздух - воздух»;
- синтезирования апертуры РЛС;
- селекции движущихся наземных целей (в том числе малоскоростных);
- сверхвысокого разрешения (до 0,3-0,9 м);
- моноимпульсного картографирования местности;
- обмена данными с другими самолетами. Кроме того, то, что РЛС сможет работать в широком диапазоне длин волн со случайной перестройкой частоты повторения импульса в пакете, повышает ее помехозащищенность. В зависимости от выбранного режима работы будет изменяться ее несущая частота: более низкая частота будет использоваться в режиме синтезирования апертуры, а более высокая - для обнаружения воздушных целей на большой дальности. Обтекатель антенны должен быть радиопрозрачен в широком диапазоне длин волн.
Луч диаграммы направленности антенны способен сканировать пространство, перемещаясь от одной точки к другой со скоростью несколько миллионов раз в секунду, поэтому каждая цель будет подсвечена до 15 раз в секунду. Ресурс антенны составляет около 8 000 ч.
К основным способам постановки помех, используемым в РЛС, относятся: срыв сопровождения по дальности, скорости и адаптивная кроссполяризационная помеха.
В МИС кроме РЛС входит комплекс средств РЭБ, главным разработчиком которого является фирма «БАе системз». Он будет проектироваться на основе аппаратуры РЭБ тактического истребителя F-22. Все оборудование намечается разместить под обшивкой летательного аппарата. Для точного определения направления прихода сигнала и дальности до источника в системе предупреждения об облучении используется корреляционный интерферометр, на вход которого будут поступать данные с расположенных на крыльях антенн и РЛС. Дополнительно оборудование РЭБ будет включать устройство выброса дипольных отражателей и специально разработанных многоспектральных инфракрасных (ИК) ловушек. Пилот истребителя сможет получать информацию от других самолетов через тактическую линию передачи данных, что позволит ему иметь представление об обстановке на всем театре военных действий. Ожидаемое время наработки на отказ комплекса 440 ч.
Для получения информации в видимом и ИК-диапазонах частот на борту самолета будет размещена интегрированная ОЭ-сис-тема, которая включает в свой состав подсистему с распределенной апертурой (DAS - Distributed Aperture System) и оптоэлект-ронную прицельную подсистему (ОЭПП).
Установить ОЭПП планируется в носовой части под фюзеляжем самолета. В качестве ее прототипа предполагается использовать систему «Снайпер-XR», разработанную для самолета F-16. Размещение подсистемы на истребителе позволит экипажу самостоятельно осуществлять поиск, обнаружение, распознавание и автоматическое сопровождение наземных тактических целей в пассивном режиме на дальности 15-20 км в любое время суток, а также поиск и сопровождение воздушных целей. Лазер даст возможность наводить управляемое высокоточное оружие, в том числе новейшее J-серии, и поражать важные наземные и морские цели (узлы связи, транспортные узлы, заглубленные командные пункты, склады, надводные корабли т. д.) с высокой точностью (рис. 3).
ОЭПП включает инфракрасную камеру переднего обзора, работающую в диапазоне длин волн 8-12 мкм, телевизионную камеру на приборах с зарядовой связью, лазерный дальномер-целеуказатель и лазер-маркер. На дисплее, расположенном в кабине пилота, может отображаться информация, поступающая от телевизионной и ИК-систем в реальном масштабе времени.
Главными особенностями этой подсистемы являются использование новейших алгоритмов обнаружения и распознавания наземных объектов по получаемому двухмерному изображению и стабилизация оптоэлектронного блока на основе перспективных технологий, которые позволили повысить точностные характеристики системы более чем в 3 раза по сравнению с аналогичными.
Для предотвращения повреждений датчиков ОЭПП (расположенных стационарно и имеющих широкую апертуру) будет установлено сапфировое стекло, обладающее высокой прочностью и являющееся прозрачным для видимого и ИК-диапазонов длин волн, но не пропускающее радиолокационные сигналы. Максимальная дальность действия лазера 40-50 км. Углы паля зрения: узкий 0,5 х 0,5°, средний 1 * Г.широкий 4 ■ 4=. Планируемое время наработки на отказ порядка 700 ч.
Подсистема DAS включает в свой состав шесть ИК-датчиков, обеспечивающих обзор пространства во всех направлениях. Информация с них может проектироваться на нашлемную прицельную систему, что даст возможность пилоту видеть обстановку в ИК-спектре под самолетом, а кроме того, она будет использоваться в качестве вспомогательного средства навигации. Предполагается, что установка на истребитель этой подсистемы с распределенной апертурой позволит сократить 30 проц. стоимости и снизить в 2 раза общую массу ИК сенсоров.
Одно из самых важных мест в БРЭО самолета F-35 занимает ССНО. Она выполняет задачи опознавания принадлежности самолета, навигации, закрытой многоканальной многодиапазонной голосовой связи, межсамолетного обмена
данными и синхронизации дисплеев нескольких самолетов. Принимаемый сигнал обрабатывается внутри системы, а на ее выход подается информация высокого уровня. Планируется, что ССНО будет работать (излучать и принимать) более 35 различных форм сигналов в диапазоне частот 30 МГц-^0 ГГц. В состав системы входят следующие основные модули: широкополосный модуль, выполняющий аналогово-цифровое преобразование и обработку сигнала; двухканальный приемопередатчик, который принимает и переводит в цифровую форму сигналы сверхширокого диапазона и выдает сигналы управления мощностью усилителя; аппаратура энергоснабжения; процессоры ССНО, которые выполняют обработку сигнала, данных и засекреченной связи; блоки интерфейса.
Вся необходимая информация с датчиков, после обработки в интегрированном центральном процессоре (ИЦП) будет поступать на дисплей в кабине пилота по оптоволоконной линии передачи данных (2 Гбит/с). Одним из главных требований к оборудованию кабины является возможность ее недорогой и быстрой модернизации за счет использования совершенных систем обработки информации, графических процессоров и многофункциональных дисплеев. В системе отображения должна найти широкое применение элементная база коммерческого производства.
В системе отображения информации, установленной в кабине, планируется применить две новые технологии: «Биг пикчер» и «Виртуальная кабина». Элементы этих технологий были наглядно продемонстрированы на действующем макете кабины самолета F-35.
Хотя в настоящее время на F-35 используются два установленных рядом широкоформатных дисплея с активной матрицей (AMLCD - Active Matrix Liquid Crystal Display) с размером поля 20,3 х 25,4 см, ведутся работы над тем, чтобы заменить их одним общим дисплеем с размером поля 20,3 х 50,8 см. Этот монитор будет занимать всю верхнюю часть приборной панели и должен выполнять роль индикатора общей ситуационной информации. На нем будет отражаться тактическая обстановка (текущие координаты самолета, маршруты, их промежуточные пункты, расположение боевых средств противника и своих войск). Информация на дисплей должна поступать с РЛС или оптоэлектронной системы, что позволит производить целеуказание в любых погодных условиях.
Жидкокристаллические мониторы имеют более 256 оттенков и обладают высокой разрешающей способностью (1 280 х 1 024 пиксела на дюйм).
Говоря о технических возможностях системы отображения информации, следует отметить следующие ее особенности:
- отказ от индикации на лобовом стекле и полный перенос этой функции на нашлемную систему целеуказания и отображения информации на защитном щитке шлема летчика;
- речевое управление отдельными функциями системы отображения информации и системы управления вооружением самолета (обычными речевыми указаниями летчик может переключать режимы работы различного оборудования и давать команды на применение оружия);
- использование экспертных систем, обеспечивающих анализ текущей информации и выработку инструкций летчику о целесообразных действиях. Благодаря оперативному планированию полетного задания выживаемость самолета в ходе его боевого применения повышается в большей степени, чем за счет использования специальных конструктивных решений и средств повышения живучести. Отображаемая на широкоформатном дисплее информация об обстановке содержит данные о текущем положении самолета на маршруте и расположении боевых средств противника (ЗРК и находящихся в воздухе летательных аппаратах), полученная путем обобщения сведений от различных (в том числе внешних) источников информации. Нанесение ЭВМ секторов действия средств поражения противника на движущуюся карту местности облегчает пилоту задачу маневрирования. На ней отображаются также зоны применения собственного оружия.
В 2000 году впервые был продемонстрирован один из новейших компонентов самолета F-35, так называемый «бортовой интеллект», реализуемый с помощью специального программного обеспечения. Это было сделано путем демонстрации информационно-управляющего поля кабины самолета не в статическом виде, а режиме виртуальной реальности, практически полностью воспроизводящей управление авиационным боевым комплексом в ходе его применения.
Система «бортового интеллекта» была создана в ходе реализации комплексной программы в области вычислительной техники и бортовых систем, последнее время проводившейся под общим руководством управлением перспективных исследований МО США (DARPA). Ее важной составляющей частью являлась разработка системы «Помощник летчи-
ка». На основе сбалансированного сочетания обычных алгоритмов управления и технологии искусственного интеллекта эта система должна обеспечить информационную поддержку в следующих ситуациях:
- боевые условия значительно отличаются от прогнозируемых;
- непредвиденная угроза заставляет пересмотреть первоначальную задачу;
- в результате отказа бортовых подсистем, ухудшения характеристик или полученного в бою повреждения необходимо внести изменения в боевую задачу;
- летчик перегружен некоррелированными данными.
Система рассчитана на выполнение функций: определение состояния бортовых систем; оценка ситуации; планирование и определение тактики выполнения боевой задачи; обеспечение взаимодействия летчика с авиационным комплексом.
Важным элементом системы управления полетом самолета F-35 является автопилот. Его возможности расширены за счет комплексирования с экспертной системой предупреждения о столкновении и обходе препятствий. Используя базу данных о рельефе местности, автопилот определяет минимальную высоту над поверхностью, с которой можно получить устойчивое и четкое изображение цели в режиме синтезирования апертуры, и обеспечивает безопасный полет.
Большое значение при разработке истребителя уделялось бортовой ЭВМ, ключевым элементом которой является ИЦП. Последний будет получать информацию с различных датчиков, размещенных на самолете, с последующей обработкой и анализом возможных вариантов принятия решения. Параллельно с ИЦП данные обрабатываются в модулях планирования поиска (МПП), атаки и облета мест нежелательного столкновения с противником.
МПП предназначен для более эффективного обнаружения наземных целей на основе критериев выделения их на рельефе местности. Например, по данным от датчиков будет выделяться колонна танков, исходя из особенностей местности, сети дорог, взаиморасположения и скорости транспортных средств. Система сможет также осуществлять запрос (в диалоговом режиме на дисплее или с помощью речевого синтезатора и анализатора) у командира эскадрильи о количестве самолетов в группе и после получения ответа показывать оптимальное место поиска колонны танков для каждого самолета, подсвечивая на карте наиболее вероятные места ее нахождения.
После захвата цели (или группы целей) модуль планирования атаки предоставит пилоту информацию об оптимальном маневре с учетом угроз, а при необходимости пошлет запрос экипажам других самолетов об оказании поддержки и прикрытии самолета.
Бортовая ЭВМ с ИЦП истребителя F-35 размещается в двух блоках, имеющих 23 и 8 слотов. Она позволяет объединять управление отдельными задачами и оружием, а также выполнять специальную функцию обработки сигналов. Быстродействие ИЦП будет на уровне 40,8 млрд опер./с, процессора обработки сигналов - 75,6 млрд с плавающей запятой, а процессора обработки и формирования изображения -225,6 млрд операций сложения/умножения. Конструкция ЭВМ включает 22 модуля семи различных типов:
- четыре универсальных процессорных модуля;
- два модуля входа/выхода на универсальный процессор;
- два модуля обработки сигналов;
- пять модулей входа/выхода процессора обработки сигналов;
- два модуля обработки изображения;
- два коммутатора;
- пять блоков электропитания.
Кроме этого, ИЦП имеет разъемы для установки съемных модулей и дополнительного блока электропитания. В нем применяются стандартные 128-битные микропроцессоры гражданского назначения «Моторола G4» Power PC.
Во всех модулях для обработки данных применяется операционная система (ОС), работающая в реальном масштабе времени, фирмы «Грин хилз софтвэа интегрити» и ОС фирмы «Меркури компьютер систем» для обработки сигналов.
Соединение модулей ИЦП осуществляется через два коммутатора с 32 портами каждый путем подключения их к последовательной высокопроизводительной шине стандарта IEEE 1394B со скоростью 400 Мбит/с, благодаря чему обеспечивается связь ИЦП и ССНО с системой управления летательным аппаратом (СУПА), которая выполняет функции контроля и эффективного использования топливной, электрической, гидравлической и других систем самолета. В состав ЭВМ СУПА входят два таких же процессора, как и в универсальный модуль ИЦП. Открытая архитектура и применение гражданских комплектующих значительно сокращают затраты на оборудование и его последующую модернизацию. В мае 2003 года была собрана первая ЭВМ СУЛА, а окончательный ее вариант планируется получить к концу 2005-го.
Обработка поступающих сигналов на первоначальном этапе (нижнем уровне) будет производиться непосредственно в системах сбора информации, а большинство процессов высокого уровня - в ЭВМ ИЦП. Например, РЛС сможет генерировать форму сигнала и преобразовывать его из аналогового вида в цифровой, но информация о дальности до цели и результатах сканировании луча будет передаваться в ЭВМ ИЦП, с выхода которой обработанные результаты поступят на дисплей, размещенный в кабине пилота, или на нашлемную систему целеуказания.
Объем программного обеспечения ИЦП истребителя F-35 будет составлять 5 млн командных строк, что в 2 раза больше, чем у F-22. Это вызвано размещением на нем более сложного оборудования, а также возможностью работы с большим числом режимов.
На новом самолете пилоты смогут загружать предполетное задание и копировать информацию (в том числе записанную в видеоформате) на портативное переносное устройство емкостью несколько сотен Гигабайт фирмы «Смиф аэроспейс», которая установит также память большой емкости и файловый сервер на самолет.
В конце октября 2001 года МО США объявило о подписании контракта стоимостью 19 млрд долларов с фирмой «Локхид-Мартин», предусматривавшего разработку и испытание самолета F-35. К концу 2002 года закончился этап проектирования истребителя и обсуждения проекта с последующей его оценкой до середины 2003 года. Общее число полностью укомплектованных самолетов (в соответствии с контрактом) составит 14 единиц. Пять самолетов F-35A с обычным взлетом/посадкой (для ВВС), пять F-35C корабельного базирования (для авиации ВМС) и четыре F-35B с коротким взлетом и вертикальной посадкой (для морской пехоты). Дополнительно МО получит восемь нелетающих самолетов для проведения ряда статических тестов, один F-35C для испытания на ударные нагрузки и один каркас для оценки изменения радиолокационного отражения. Первый полет истребителя F-35A запланирован на октябрь 2005 года, F-35B - на начало 2006-го, a F-35C - спустя девять месяцев.
Программа летных испытаний некоторых элементов оборудования включала два этапа. Первый проходил на самолете лаборатории ВАС 1-11, на борту которого размещены АФАР и ОЭ прицельная демонстрационная система, а также датчики системы с распределенной апер-
турой. Вторая фаза заключалась в интегрировании датчиков «Локхид-Мартин» с программным обеспечением. По итогам тестов, продолжавшихся шесть месяцев, было проведено контрольное испытание по сопровождению самолета F/A-18, выполнявшего роль мишени.
Кроме главного подрядчика в разработке БРЭО для истребителя F-35 принимают участие следующие фирмы: «Кайзер электронике» и «Элбит» - нашлемная система целеуказания, «Белл аэроспейс» - ССНО и ее антенны (одна диапазона частот 2-4 ГГц, две - 0,3-1 ГГц, 2 антенны радиовысотомеров и 3 - диапазона частот 1-2 ГГц на каждый самолет), «Харрис» - оснащение кабины пилота, программное обеспечение обработки изображения и формирование цифровой карты, волоконно-оптические линии, высокоскоростные линии связи и элементы ССНО, «Ханиуэлл» - радиовысотомер, инерциально-навигационная система и КРНС NAVSTAR, «Рэйтеон» - 24-ка-нальный устойчивый к помехам приемник КРНС.
Полномасштабная разработка тактического истребителя F-35 оценивается в
23,8 млрд долларов. Поступление на вооружение первых серийных машин ожидается в 2010 году. Всего для ВС США намечено закупить около 2 600 машин. Полноправный участник программы - Великобритания — обеспечивает 10-процентное финансирование и планирует приобрести около 150 истребителей F-35. Кроме того, на данный момент интерес к новому самолету проявили ряд других государств (Канада, Франция, Германия, Греция, Израиль, Сингапур, Испания, Швеция, Турция и Австралия). Объем экспортных поставок истребителей F-35 может превысить 2 000 машин. Стоимость одного самолета составит 40—50 млн долларов (в зависимости от варианта).
Перспективный тактический истребитель F-35 разработан по программе JSF. Пилот этого самолета сможет эффективно управлять и использовать весь комплекс БРЭО, принимая решение об оптимальной траектории выхода к цели и применении оружия, а также контролировать выполнение боевой задачи на базе информации, поступающей от бортовых датчиков и внешних источников.

Изобретение относится к авиационному приборостроению. В состав комплекса входят цифровая вычислительная система, система информационного обмена с тремя мультиплексными каналами, комплексная система управления самолетом, система управления вооружением, комплексная система электронной индикации, управления и прицеливания, система управления общесамолетным оборудованием, бортовая система объективного контроля, система электроснабжения, а также система управления силовой установкой. Комплекс также снабжен средством предварительной обработки сигналов датчиков для обеспечения единого информационного поля. При отказе вычислительной системы управление вычислительным процессом передается системе управления общесамолетным оборудованием. Многофункциональные цветные индикаторы взаимозаменяемы и обеспечивают летчика полной пилотажно-навигационной информацией при отказе одного из них и минимальным объемом информации, необходимой для безопасного пилотирования, при отказе двух из них. При отказе двух цифровых вычислительных машин вычислительной системы и системы управления общесамолетным оборудованием комплекс переходит в режим ручного управления. Комплекс характеризуется повышенной эксплуатационной надежностью. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного приборостроения и предназначено для использования при построении многоцелевых (боевых и/или учебно-боевых) самолетов. Современный уровень развития электроники, вычислительной техники, бортового оборудования и средств автоматизированной разработки и отладки программного обеспечения обеспечивает переход к качественно новому этапу проектирования комплексов бортового радиоэлектронного оборудования, при котором создание отдельных приборов и систем подчинено идее единого (интегрированного) комплекса бортового радиоэлектронного оборудования (ИК БРЭО), помогающего экипажу выполнять необходимые задачи и защищающего его от информационных и психологических перегрузок. Известен комплекс бортового радиоэлектронного оборудования, выполненный с использованием бортовой цифровой вычислительной системы управления полетом и учебно-боевыми действиями и системы информационного обмена, а также включающий в себя пилотажно-навигационную систему и системы управления вооружением и радиоэлектронным противодействием (RU 96123485 А1, В 64 С 30/00, 10.02.1999). Однако известный комплекс не удовлетворяет непрерывно возрастающим требованиям к современным боевым самолетам по таким важным характеристикам, как степень автоматизации полета, точность, многорежимность, многоцелевость и автоматизация применения оружия, всепогодность и полное суточное применение, комфортность работы экипажа, высокая эффективность выполнения полетного задания в условиях возможного противодействия, высокий уровень надежности, высокая степень готовности к вылету, низкая трудоемкость и малое время обслуживания при эксплуатации. Наиболее близким к предложенному является ИК БРЭО, в состав которого входят бортовая цифровая вычислительная система управления полетом и учебно-боевыми действиями, система информационного обмена и внешнее запоминающее устройство, аппаратура ввода информации, инерциальная система, радиотехническая система ближней навигации и посадки, ответчик системы управления воздушным движением и госопознавания, автоматический радиокомпас, радиовысотомер, маркерный приемник, комплексная система управления самолетом, система управления вооружением, комплексная система электронной индикации, управления и прицеливания, информационные табло аварийной сигнализации, система спутниковой связи, система управления общесамолетным оборудованием, бортовая система объективного контроля, связная радиостанция, модуль самолетного переговорного устройства, система электроснабжения, внешнее и внутреннее светотехническое оборудование, комплексная система аварийного покидания самолета, а также система управления силовой установкой (RU 2174485 С1, В 64 С 30/00, 10.10.2001). Недостаток известного ИК БРЭО связан с невысокой надежностью работы в сложных и меняющихся условиях работы, например в широком диапазоне температур. Задачей изобретения является повышение эксплуатационной надежности подобного ИК БРЭО. Технический результат достигается тем, что ИК БРЭО легкого учебно-боевого самолета, содержащий бортовую цифровую вычислительную систему управления полетом и учебно-боевыми действиями, связанную с системой информационного обмена и состоящую из двух цифровых вычислительных машин, связанных между собой с возможностью резервирования, внешнее запоминающее устройство и аппаратуру ввода информации, связанные с бортовой цифровой вычислительной системой, инерциальную систему, радиотехническую систему ближней навигации и посадки и ответчик системы управления воздушным движением и госопознавания, связанные единой антенно-фидерной системой, автоматический радиокомпас, радиовысотомер с приемопередатчиком и антенным устройством, маркерный приемник, установленные в кабине летчика и оператора пульты комплексной системы управления самолетом, которая содержит четырехкратно резервированные вычислители с блоками питания, датчики линейных ускорений, датчик угловых скоростей, датчики положения органов управления и носков крыла и узел управления закрылками, датчики измерения углов атаки и скольжения, датчики измерения полного и статического давлений и приемники температуры торможения воздушного потока, установленные в кабине летчика и оператора пульты системы управления вооружением, которая содержит блоки управления управляемым и неуправляемым оружием и устройством выброса помеховых патронов, установленные в кабине летчика и оператора из состава комплексной системы электронной индикации, управления и прицеливания три многофункциональных цветных индикатора, многофункциональные пульты управления, прицельно-пилотажный индикатор и нашлемную систему целеуказания и индикации, включающую в себя нашлемное визирное устройство, электронный блок и сканирующее устройство, установленные в кабине летчика и оператора информационные табло аварийной сигнализации, систему спутниковой связи, двукратно резервированную систему управления общесамолетным оборудованием, включающим блоки сбора и обработки параметрической информации и исполнительные блоки, бортовую систему объективного контроля, включающую бортовую систему автоматического контроля, аппаратуру речевого оповещения, бортовые эксплуатационный и защищенный накопители и телевизионную систему объективного контроля с пультом управления, телекамерами и блоком видеозаписи, связную радиостанцию, модуль самолетного переговорного устройства, систему электроснабжения, включающую основную систему генерирования переменного тока, вспомогательную систему генерирования переменного тока, систему генерирования постоянного тока и аварийную систему постоянного тока на аккумуляторных батареях, внешнее и внутреннее светотехническое оборудование, комплексную систему аварийного покидания самолета, а также двукратно резервированную электронную систему управления силовой установкой, при этом система информационного обмена разделена на три независимых мультиплексных канала информационного обмена, первый из которых является каналом системы управления вооружением и предназначен для подключения к бортовой вычислительной системе упомянутых узлов системы управления оружием и обзорно-прицельных систем, второй канал является каналом автоматизированной системы управления самолетом и предназначен для подключения к бортовой вычислительной системе инерциальной системы, радиотехнической системы ближней навигации и посадки, радиовысотомера, бортовой системы объективного контроля, ответчика системы управления воздушным движением и государственного опознавания, комплексной системы управления, комплексной системы аварийного покидания самолета, системы управления общесамолетным оборудованием, электронной системы управления силовой установки, а третий канал является каналом комплексной системы управления электронной индикации, управления и прицеливания и предназначен для подключения к бортовой вычислительной системе электронных многофункциональных индикаторов, многофункциональных пультов управления и прицельно-пилотажного индикатора, - снабжен средством предварительной обработки сигналов, передаваемых датчиками первичной информации, для обеспечения единого информационного поля, и передачи сигналов потребителям по цифровым линиям информационного обмена, комплексной системой управления, связанной со средством предварительной обработки сигналов и бортовой цифровой вычислительной системой, между вычислительной системой и системой управления общесамолетным оборудованием выполнены радиальные связи с возможностью передачи последней управления вычислительным процессом при отказе обеих цифровых вычислительных машин вычислительной системы, многофункциональные цветные индикаторы комплексной системы электронной индикации, управления и прицеливания являются полностью взаимозаменяемыми и выполнены с возможностью обеспечения летчика полной пилотажно-навигационной информацией при отказе одного из них и минимальным объемом пилотажно-навигационной информации, необходимой для безопасного пилотирования, при отказе двух из них, между многофункциональными цветными индикаторами и комплексной системой управления выполнены радиальные связи с возможностью обеспечения перехода комплекса в режим ручного управления при отказе двух цифровых вычислительных машин вычислительной системы и системы управления общесамолетным оборудованием. Достижению технического результата способствуют частные существенные признаки изобретения. Цифровые вычислительные машины бортовой цифровой вычислительной системы и системы управления общесамолетным оборудованием, а также два многофункциональных цветных индикатора комплексной системы электронной индикации, управления и прицеливания соединены по цепям питания с аккумуляторной батареей и выпрямительными устройствами генераторов переменного тока основной или вспомогательной силовых установок с возможностью бесперебойного электроснабжения. Система управления общесамолетным оборудованием включает в себя две цифровые вычислительные машины, предназначенные для выполнения функций упомянутых бортовых цифровых вычислительных машин при их отказе. На чертеже представлена функциональная схема предложенного ИК БРЭО (составные узлы, расположенные в кабине оператора с целью упрощения чертежа не показаны). ИК БРЭО представляет собой комплекс функционально-связанных программно-аппаратных средств, объединенных мультиплексной системой информационного обмена. В бортовой автоматизированной системе управления (БАСУ) имеются: - бортовая цифровая вычислительная система (БЦВС) 1 с бортовыми цифровыми вычислительными машинами 2, 3; - внешнее запоминающее устройство (ВЗУ) 4; - комплексная система электронной индикации (КСЭИ), в которую входят: а) прицельно-пилотажный индикатор (ППИ) 5, б) многофункциональные индикаторы (МФЦИ) 6-8, в) многофункциональные пульты управления (МФПУ) 9, г) блок коммутации телевизионных сигналов (БКТС) 10; - речевая информационно-управляющая система (РИУС) 11; - система ввода информации (СВИ) 12;
- нашлемная система целеуказания (НСЦ) 13;
- системные мультиплексные каналы информационного обмена (СМКИО) 14-16. В навигационном комплексе (НК) имеются:
- бесплатформенная инерциальная навигационная система (БИНС), интегрированная со спутниковой навигационной системой 17, 18;
- радиотехническая система ближней навигации и посадки (РСБН) 19;
- автоматический радиокомпас (АРК) 20;
- маркерный радиоприемник (МРП) 21;
- ответчик госопознавания, интегрированный с самолетным ответчиком управления воздушным движением (ОГО и УВД) 22;
- радиовысотомер (РВМ) 24. В комплексной системе управления самолетом (КСУ = СДУ + СТУ) 23 имеются:
- цифровые резервированные вычислители;
- блоки питания;
- электрогидравлические рулевые привода поверхностей управления;
- датчики угловых скоростей;
- датчики линейных ускорений;
- датчики положения резервированные;
- датчики ПВД;
- приемники температуры торможения;
- ручка управления самолетом;
- пульт управления. В ИК БРЭО реализация функций СВС+СПКР+СППЗ интегрирована в КСУ. В бортовом радиоэлектронном комплексе (БРЭК) 25 имеются:
- радиолокационный прицельный комплекс (РЛПК), в который входят:
а) бортовая радиолокационная станция (РЛС) переднего обзора 26;
б) бортовая радиолокационная станция (РЛС) заднего обзора 27;
в) бортовая цифровая вычислительная система (БЦВС) 28;
- оптико-электронный прицельный комплекс (ОЭПК) 29, в который входят:
а) оптико-электронная прицельная система (ОЭПС) передней полусферы в подвесном контейнере 30;
б) обзорно-следящий теплопеленгатор (ОСТП) задней полусферы 31;
в) малогабаритная тепловизионная система (ТПС) 32 в подвесном контейнере;
г) обнаружитель лазерного пятна 33;
- запросчик государственного опознавания (ЗГО) 34;
- локальный мультиплексный канал информационного обмена (ЛМКИО) 35;
В бортовом комплексе обороны (БКО) 36 имеются:
- комплекс радиоэлектронного противодействия (КРЭП), в который входят:
а) бортовая цифровая вычислительная машина (БЦВМ) 38;
б) приемные модули радиотехнической разведки с антеннами (ПРМРР) 39;
в) передающие модули радиопомех с антеннами (ПМР) 40;
г) аппаратура заднего обзора (АЗО) 41;
- станция предупреждения о лазерном облучении типа (СПЛО) 42;
- технические средства постановки объемно-поглощающих завес (ОПЗ) и объемно-детонирующих систем (ОДС) 43. В интегрированном бортовом комплексе связи (ИБКС) 44 имеются:
- модуль радиотехнической связи в МВ-ДМВ диапазоне 45;
- модуль ТЛК связи в МВ-ДМВ диапазоне 46;
- модуль спутниковой связи 47;
- аппаратура засекречивания телефонных переговоров ЗАС-ТЛФ 48;
- аппаратура засекречивания ТЛК данных ЗАС-ТЛК 49;
- аппаратура внутренней связи и коммутации (АВСК) 50;
- специализированный цифровой вычислитель (СЦВ) 51;
- локальный мультиплексный канал информационного обмена (ЛМКИО) 52. В системе управления оружием (СУО) 53 имеются:
- бортовая цифровая вычислительная машина (БЦВМ) 54;
- локальный мультиплексный канал информационного обмена 55;
- блоки сопряжения с ЛМКИО (ОУ СУО) 56;
- блоки исполнительные (БИ) 57, обеспечивающие разгрузку АСП, в том числе аварийную, и управление встроенной пушечной установкой;
- устройства выброса пороховых патронов (УВ) 58. Система управления общесамолетным оборудованием (СУ ОСО) 59 с блоком исполнительным (БИ). В системе объективного контроля (СОК) 60 имеются:
Бортовое устройство регистрации (БУР) 61 в составе:
- блок сбора и обработки цифровой и параметрической информации (БСПИ);
- защищенный бортовой накопитель (ЗБН);
- эксплуатационный бортовой накопитель (ЭБН);
- телевизионная система объективного контроля (Т-СОК) 62 в составе:
- телекамеры закабинного пространства;
- видеомагнитофон. В системе управления силовой установкой (СУ СУ) имеются:
- система автоматического управления и контроля силовой установки (САУ СУ) 63, 64;
- малоходовая ручка управления двигателем (РУД). Кроме того, в ИК БРЭО включены:
- система аварийного покидания самолета (КСАПС) 65;
- система электроснабжения (СЭС) 66;
- генератор на ВСУ 67;
- бортовые панели техобслуживания 68. Управляющий комплекс бортового радиоэлектронного оборудования современных легких многоцелевых самолетов в процессе своей работы решает широкий круг задач, которые неразрывно связаны между собой и подчинены одной цели - успешному выполнению боевой операции. По назначению и времени решения эти задачи можно разделить на две группы:
- общие, обеспечивающие эксплуатацию самолета во всем диапазоне летно-технических характеристик с помощью источников информации о целях на борту (РЛС, ОЭС), оборудования по управлению планером, работой двигателя и т.д;
- специальные, позволяющие осуществлять подготовку и применение средств поражения целей, радиоэлектронного противодействия им. Оборудование для реализации первой группы задач, как правило, функционирует или находится в состоянии дежурной готовности к применению в течение всех этапов полета, т.е. от взлета до посадки. Специальные задачи решаются с помощью оборудования, которое работает эпизодически: при преодолении зоны противовоздушной обороны противника, при контакте с целью и т.д. Специальное оборудование подразделяется на оборудование, обеспечивающее работу системы управления оружием (СУО), оборудование комплекса радиоэлектронного противодействия (КРЭП). По выполняемым функциям СУО и КРЭП являются подсистемами (нижний уровень) в структуре УКБО и находятся в тесном взаимодействии информационном, логическом, энергетическом с центральной БЦВМ и остальными подсистемами. Выполняемые оборудованием функции и режимы его работы могут изменяться с учетом реальной ситуации, возникшей при выполнении боевой задачи, так, например, аппаратура связи и передачи информации при ведении групповых действий самолета несет гораздо большую информационную нагрузку, чем при действиях одиночного самолета, а использование аппаратуры радиопротиводействия зависит от радиотехнической обстановки; аппаратура же опознавания государственной принадлежности, кроме дежурного ответа, имеет режим запроса и т.д. В настоящее время наметилась отчетливая тенденция создания авиационных комплексов широкого применения на основе базовой конструкции самолета и базового состава аппаратуры общего назначения путем внесения изменений и дополнений в средства навигации, прицельные системы и системы управления оружием. Например, учебно-тренировочный и учебно-боевой самолеты; истребительный - ударный - штурмовой самолеты. Рассмотрим перечень задач, решаемых на борту истребителя-перехватчика (ИП) и легкого ударного самолета (ЛУС), которые по конструкции планера и силовой установки не имеют существенных отличий. Многие из задач для самолетов четвертого, пятого поколений достаточно сложны и решаются только с использованием средств современной вычислительной техники. Например, задачи точной навигации и управления полетом; обеспечения режимов сверхзвукового полета и полета на малых высотах с отслеживанием рельефа местности; решения задач адаптации и самонастройки систем управления. Расширение функций БВС в части контроля оборудования и систем по состоянию, с учетом данных встроенного контроля, потребует решения этого комплекса задач в процессе выполнения полетного задания и, следовательно, дополнительных электронных средств индикации (для контроля оборудования, оповещения и сигнализации о его готовности к выполнению своих функций и для выдачи рекомендаций летчику о последовательности его действий в той или иной аварийной ситуации). Архитектура ИКБО является открытой. Она позволяет наращивать состав бортового оборудования, состав вооружения и варьировать комплектацией прицельной системы с минимальными доработками аппаратурной части и соответствующими доработками модульной структуры программного обеспечения БЦВС и СУО. Таким образом, предлагаемая открытая архитектура интегрированного комплекса бортового оборудования позволяет в сжатые сроки создать комплексы бортового оборудования перспективных легких многоцелевых самолетов с приемлемыми массо-габаритными характеристиками. ИК БРЭО обеспечивает алгоритмическую реализацию системы "электронный летчик" с применением методов искусственного интеллекта и принципов построения экспертных систем, помогающих летчику в принятии решений при управлении самолетом и оружием в типовых боевых ситуациях. Система обеспечивает решение задач в реальном масштабе времени с возможностями активного управления самолетом и его системами в интересах решения следующих задач:
- накопления данных об обстановке, синтез обстановки на основе равнохарактерной информации с последующим анализом в реальном масштабе времени;
- выбора оптимальной траектории для облета зон ПВО противника;
- изменения и уточнения маршрута полета;
- выборки рекомендаций по применению тактических решений на различных этапах ведения воздушного боя;
- классификации и выбора целей (в части РЛПК) одновременного обнаружения не менее 10 целей, сопровождение не менее 8 целей, пуска ракет по не менее 2-4 целям;
- определения количества одновременно обстреливаемых целей, последовательности и наряда расходуемых средств поражения;
- организации управления режимами работы комплексов, входящих в ИК БРЭО;
- оптимального применения средств обнаружения и средств радиоэлектронного подавления;
- определения взаимодействия и распределение функций между самолетами группы;
- контроля работы ИК БРЭО и т.д. Характерной чертой перспективного ИКБО является наличие глобальной системы информационного обмена и интеграция подсистем (КСУ, НК, СУО, БРЭК, ИБКС, СУ ОСО) на основе локальных мультиплексных каналов информационного обмена, которые могут быть реализованы как с проводными, так и с волоконно-оптическими линиями связи в рамках логической организации комбинированных систем информационного обмена. Следует отметить, что проработка вариантов и степени автоматизации управления самолетом и алгоритмов деятельности летчика должна проводиться с одновременным внедрением новых концепций построения информационно-управляющих полей на рабочих местах членов летных экипажей, предусматривающих создание летчику комфортных условий для сознательного контроля ситуации и собственных действий, а также оперативного его включения в контур управления. Внедрение многофункциональных средств отображения информации и органов управления изменяет принцип "каждой бортовой системе свой индикатор (группа индикаторов) и орган управления (группа органов управления)", применяемый на самолетах третьего поколения, на современный принцип "интеграции средств отображения информации и органов управления, меняющих свою функцию по определенному замыслу, в информационно-управляющие поля". Поэтому в настоящее время к информационно-управляющим полям предъявляется целый ряд новых требований, обусловленных тем, что внедряются новые средства и формы отображения информации, которые, как и устанавливаемые органы управления, интегрируют возможности большого числа пультов. Новые требования обусловлены с одной стороны возможностью уменьшения габаритов приборных досок наряду с оптимизацией потоков информации в полете между членами экипажа, а также необходимостью представления полетной информации по этапам полета и при возникновении аварийной ситуации. С другой стороны, важное значение приобретает оперативное определение функционального значения минимального числа устанавливаемых органов управления. Как уже указывалось, индикационное обеспечение пилотажно-навигационных режимов, контроля работы общесамолетного оборудования и боевого применения реализовано с помощью трех МФЦИ на жидко-кристалической матрице, КАИ 8, МФПУ 9, которые объединены в единую интегральную систему информации с управляющей БЦВМ с мультиплексным и локальным каналами информационного обмена, что позволяет не только предъявлять возрастающий объем информации от различных средств на ограниченной площади приборной доски, но и оптимизировать условия для восприятия количественной приборной и естественной внекабинной информации, повысить ее наглядность. Связь МФЦИ, КАИ и МФПУ с управляющей БЦВМ осуществлена также резервными радиальными каналами информационного обмена. В целях повышения живучести два из МФЦИ 6-8 и управляющая БЦВМ подключены к системе энергоснабжения по первой категории, т.е., как уже указывалось, запитываются от аккумуляторной батареи и выпрямительных устройств генератора переменного тока, основной или вспомогательной силовых установок. Принцип взаимозаменяемости индикаторов позволяет при отказе одного из трех МФЦИ обеспечить практически полный объем информации для выполнения пилотажно-навигационной задачи, а для случая отказа двух из МФЦИ 5-7 разработан специальный информационный кадр "аварийный", обеспечивающий выдачу минимальной пилотажно-навигационной информации на одном не отказавшем МФЦИ, необходимой для безопасного пилотирования. Отказ от применения основных и резервных электромеханических приборов позволяет рационально использовать площадь приборной доски, уменьшая при этом степень насыщенности информацией оперативного поля восприятия. Таким образом, предложенный ИК БРЭО решает широкий круг задач и характеризуется повышенной надежностью в работе.

Формула изобретения

1. Интегрированный комплекс бортового оборудования легкого учебно-боевого самолета, содержащий бортовую цифровую вычислительную систему управления полетом и учебно-боевыми действиями, связанную с системой информационного обмена и состоящую из двух цифровых вычислительных машин, связанных между собой с возможностью резервирования, внешнее запоминающее устройство и систему ввода информации, связанные с бортовой цифровой вычислительной системой, инерциальную систему, радиотехническую систему ближней навигации и посадки и ответчик системы управления воздушным движением и госопознавания, связанные единой антенно-фидерной системой, автоматический радиокомпас, радиовысотомер с приемопередатчиком и антенным устройством, маркерный приемник, установленные в кабине летчика и оператора пульты комплексной системы управления самолетом, которая содержит четырехкратно резервированные вычислители с блоками питания, датчики линейных ускорений, датчик угловых скоростей, датчики положения органов управления и носков крыла и узел управления закрылками, датчики измерения углов атаки и скольжения, датчики измерения полного и статического давлений и приемники температуры торможения воздушного потока, установленные в кабине летчика и оператора пульты системы управления вооружением, которая содержит блоки управления управляемым и неуправляемым оружием и устройством выброса помеховых патронов, установленные в кабине летчика из состава комплексной системы электронной индикации, управления и прицеливания три многофункциональных цветных индикатора, индикатор на лобовом стекле, многофункциональные пульты управления, прицельно-пилотажный индикатор и нашлемную систему целеуказания и индикации, включающую в себя нашлемное визирное устройство, электронный блок и сканирующее устройство, установленные в кабине летчика и оператора информационные табло аварийной сигнализации, систему спутниковой связи, двукратно резервированную систему управления общеоамолетным оборудованием, включающим блоки сбора и обработки параметрической информации и исполнительные блоки, бортовую систему объективного контроля, включающую бортовую систему автоматического контроля, аппаратуру речевого оповещения, бортовые эксплуатационный и защищенный накопители и телевизионную систему объективного контроля с пультом управления, телекамерами и блоком видеозаписи, связную радиостанцию, модуль самолетного переговорного устройства, систему электроснабжения, включающую основную систему генерирования переменного тока, вспомогательную систему генерирования переменного тока, систему генерирования постоянного тока и аварийную систему постоянного тока на аккумуляторных батареях, внешнее и внутреннее светотехническое оборудование, комплексную систему аварийного покидания самолета, а также двукратно резервированную электронную систему управления силовой установкой, при этом система информационного обмена разделена на три независимых мультиплексных канала информационного обмена, первый из которых является каналом системы управления вооружением и предназначен для подключения к бортовой вычислительной системе упомянутых узлов системы управления оружием и обзорно-прицельных систем, второй канал является каналом автоматизированной системы управления самолетом и предназначен для подключения к бортовой вычислительной системе инерциальной системы, радиотехнической системы ближней навигации и посадки, радиовысотомера, бортовой системы объективного контроля, ответчика системы управления воздушным движением и государственного опознавания, комплексной системы управления, комплексной системы аварийного покидания самолета, системы управления общесамолетным оборудованием, электронной системы управления силовой установки, а третий канал является каналом комплексной системы управления электронной индикации, управления и прицеливания и предназначен для подключения к бортовой вычислительной системе электронных многофункциональных индикаторов, многофункциональных пультов управления и прицельно-пилотажного индикатора, отличающийся тем, что он снабжен средством предварительной обработки сигналов, передаваемых датчиками первичной информации, для обеспечения единого информационного поля и передачи сигналов потребителям по цифровым линиям информационного обмена, комплексной системой управления, связанной со средством предварительной обработки сигналов и бортовой цифровой вычислительной системой, между вычислительной системой и системой управления общесамолетным оборудованием выполнены радиальные связи с возможностью передачи последней управления вычислительным процессом при отказе обеих цифровых вычислительных машин вычислительной системы, многофункциональные цветные индикаторы комплексной системы электронной индикации, управления и прицеливания являются полностью взаимозаменяемыми и выполнены с возможностью обеспечения летчика полной пилотажно-навигационной информацией при отказе одного из них и минимальным объемом пилотажно-навигационной информации, необходимой для безопасного пилотирования, при отказе двух из них, между многофункциональными цветными индикаторами и комплексной системой управления выполнены радиальные связи с возможностью обеспечения перехода комплекса в режим ручного управления при отказе двух цифровых вычислительных машин вычислительной системы и системы управления общесамолетным оборудованием. 2. Комплекс по п. 1, отличающийся тем, что цифровые вычислительные машины бортовой цифровой вычислительной системы и системы управления общесамолетным оборудованием, а также два многофункциональных цветных индикатора комплексной системы электронной индикации, управления и прицеливания соединены по цепям питания с аккумуляторной батареей и выпрямительными устройствами генераторов переменного тока основной или вспомогательной силовых установок с возможностью бесперебойного электроснабжения. 3. Комплекс по п. 1 или 2, отличающийся тем, что система управления общесамолетным оборудованием включает в себя две цифровые вычислительные машины, предназначенные для выполнения функций упомянутых бортовых цифровых вычислительных машин при их отказе.

Похожие патенты:

Изобретение относится к авиационному приборостроению

Кандидат технических наук Г. АНЦЕВ, А. КИСЕЛЕВ, доктор технических наук В. САРЫЧЕВ (ОАО "Радар ММС").

О гражданской авионике, призванной коренным образом изменить работу пассажирского авиатранспорта, рассказывалось в статье "Авионика. Регулировщик воздушного движения" (см. "Наука и жизнь" № 2, 2004 г.). Военная авионика, конечно, богаче по своим возможностям, и теперь речь о ней. Боевые характеристики военной авиационной техники определяются, прежде всего, уровнем систем авионики. Бортовые компьютеризированные устройства не только берут на себя многие рутинные процедуры пилотирования, они способны эффективно парировать внезапно возникающие угрозы. Поэтому крайне важное значение приобретает мониторинг, то есть поиск и обнаружение "объектов" на земле и в воздушном пространстве и оценка их с точки зрения успешного выполнения поставленной задачи.

Обнаружение целей при облучении их радаром самолета-разведчика (а) и "подсвечивающим" радаром (б).

Член-корреспондент АН СССР С. М. Рытов (1908-1996), один из основоположников радиофизики.

Филигранно подобранные форма и размеры самолета F-117, а также особое покрытие поверхности мешают радарам обнаружить его и спереди и сбоку.

Работая в нескольких диапазонах волн, радар в состоянии обнаружить объекты не только на поверхности, но и на определенной глубине.

Согласно теореме Котельникова, если время между отсчетами τ меньше полупериода Т/2 колебаний (а), то форму сигнала можно восстановить; если же это время больше полупериода (б), то сигнал восстановить не удается.

Антенная решетка состоит из отдельных модулей.

При отклонении луча апертура решетки А" уменьшается пропорционально косинусу угла отклонения, и соответственно падает разрешающая способность радара.

Активная фазированная антенная решетка в головной части крылатой ракеты.

При достаточно большом интервале синтезирования виртуальная апертура может составить десятки метров, благодаря чему разрешающая способность антенной решетки

НЕВИДИМОЕ СТАНОВИТСЯ ЗРИМЫМ

Одной из главных функций военной авиации была и остается разведка. Во время Второй мировой войны пилоты могли рассчитывать лишь на собственные глаза да на фотокамеры, установленные на самолете. Ныне разведку ведут, используя мониторинговые радиоэлектронные системы. Эти системы перспективны и в хозяйственных областях.

Средства авионики регистрируют как собственное излучение наблюдаемого объекта от работающих на нем радиосредств или источников тепла, так и электромагнитные волны, которые отражаются от него при облучении радаром, расположенным непосредственно на самолете-разведчике. Сейчас все чаще, и не только в военной области, прибегают к радиолокационной разведке "с подсвечиванием". Объекты на земле или в воздушном пространстве облучают внешними источниками, а отраженный сигнал регистрируется антенной самолета-разведчика, работающей на прием.

Но самое главное состоит даже не в том, чтобы обнаружить объект, а в том, чтобы идентифицировать его, то есть ответить на вопрос: "Что же мы, собственно, наблюдаем?" Это одна из самых сложных задач, стоящих перед системами авионики. Чтобы решить ее, нельзя обойтись без самых современных средств вычислительной техники. Разработчики авионики используют и достижения радиофизики - области науки, основателем которой во всем мире по праву считается член-корреспондент АН СССР Сергей Михайлович Рытов. Распознать объект удается благодаря тому, что механизмы рассеяния и поглощения посылаемых в его сторону радиоволн тесно связаны с физическими и геометрическими характеристиками объекта. Дополнительную информацию можно получить по характеру его собственного излучения.

Например, металлические предметы практически целиком отражают падающие на них волны. Степень же поглощения волны веществом зависит от его диэлектрической и магнитной проницаемости.

В мониторинговой авионике стремятся использовать чрезвычайно широкий частотный спектр электромагнитных волн - с длинами от долей миллиметра до сотен метров. Это связано с тем, что изображение на дисплее зависит от длины волны, на которой работает радиолокатор: насколько сильно отражает или поглощает объект падающее на него электромагнитное излучение определяется, прежде всего, длиной волны, а также размерами самого объекта и различными неоднородностями физических и геометрических характеристик. Например, самолеты, выполненные по технологии "стелс", имеют такой филигранно подобранный набор геометрических форм и электрофизических свойств поверхности, что для определенного, "освоенного" противником диапазона волн отраженный сигнал попросту отсутствует. В более длинноволновой или более высокочастотной области эти "невидимки" обнаруживаются.

Сегодня, как правило, радиолокатор формирует и обрабатывает сигналы в нескольких частотных диапазонах. Если эти диапазоны значительно разнесены друг от друга, то на соответствующих изображениях мы обнаружим разные детали объекта. То же самое, кстати, будет, если сравнить картины звездного неба, полученные с помощью оптического телескопа и радиотелескопа.

В начале эры радиолокации разработчики делали ставку на волны УВЧ- и СВЧ-диапазонов, то есть пытались "разглядеть" возможно более мелкие предметы: объект отражал волну, если его размеры были больше длины волны или сопоставимы с ней. Однако впоследствии оказалось, что не так просто обнаружить, например, колонны военной техники, если они движутся по дороге, обсаженной деревьями: листва как покрывало отражала сантиметровые волны, пряча под собой корпуса танков и бронетранспортеров. А ракетную шахту можно было замаскировать обычным стогом сена.

Теперь радиолокаторы все чаще "осваивают" низкочастотный диапазон, волны которого проникают даже сквозь почву и позволяют обнаружить закопанные и укрытые объекты. Примером может служить четырехчастотный радиолокационный комплекс "Имарк", за создание которого его авторы - сотрудники Московского научно-исследовательского института приборостроения - получили в 2000 году Государственную премию РФ. Этот радиолокатор формирует и обрабатывает сигналы на длинах волн 3,9; 23; 68 и 254 см. Так вот, на самой длинной волне - 2,54 м - комплекс "видит" скопления грунтовых вод, различные геологические структуры, в том числе и алмазные трубки. Сигналы этих частот проникают и под лед, а при работе на волне 3,9 см от радара в чистом поле не укроется даже заяц.

Если же облучать объект последовательно или сразу волнами нескольких диапазонов, то можно, с одной стороны, выявить его структуру, а с другой - "устранить" препятствия, мешающие наблюдению: растительность, земной и водный покров, туман и облака.

Несколько лет назад на нефтепроводе в Республике Коми произошла авария, но стояла зима, и разлившуюся нефть тут же засыпало снегом. Дожидаться весны - нефть пропитает почву и погубит все живое. На поиск места аварии вылетел самолет с многочастотным радаром и точно обнаружил скрытые границы пятна.

Ныне в авионике стали использовать прежде экзотические сверхширокополосные сигналы, занимающие полосу частот в несколько гигагерц, - в результате можно сформировать еще более детальную картину. Кроме того, сверхширокополосные сигналы крайне трудно обнаружить, поэтому, используя их, можно скрыть не только передаваемую информацию, но и сам факт ее передачи.

"ГЛАЗА" САМОЛЕТА

Если нам нужно взглянуть в сторону, мы либо поворачиваем голову, либо переводим взгляд. Примерно таким же образом можно осуществлять радиолокацию. Правда, когда речь заходит о радаре, мы, как правило, представляем себе вращающееся или качающееся сооружение, которое состоит из излучателя и отражателя (зеркальной антенны).

Однако еще в 1937 году американские исследователи Г. Фрис и К. Фельдман выдвинули идею так называемой управляемой антенной решетки. Принцип действия этого устройства основан на положении, сформулированном в 1933 году российским ученым В. А. Котельниковым в виде теоремы, получившей его имя. Он доказал, что практически любой сигнал можно восстановить, имея ряд его мгновенных значений, взятых через равные промежутки времени (эквидистантных отсчетов). Причем интервал между отсчетами должен быть меньше полупериода высшей гармоники сигнала.

Антенная решетка представляет собой размещенную в плоскости совокупность отстоящих на одинаковом расстоянии друг от друга небольших излучателей (модулей). Иначе говоря, их можно, согласно теории Котельникова, принять за отсчетчики, если расстояния между ними не превышают половины излучаемой или принимаемой антенной решеткой длины волны. С помощью фазовращателей можно так подобрать фазу излучения каждого модуля, что решетка в целом станет излучать острый луч, причем такой же, как излучала бы зеркальная антенна, размер которой равен всей антенной решетке - от первого модуля до последнего. По этому лучу никак нельзя заметить, что антенна "дырявая", то есть что в ней есть просветы между модулями.

Более того, согласованно меняя фазы модулей, можно заставить луч отклоняться, и при механически неподвижной решетке будет происходить сканирование пространства - совсем как мы, не поворачивая головы, глазами просматриваем страницу книги.

Такой решеткой можно формировать и несколько лучей, причем каждый со своей динамикой. В результате получается многолучевая антенная решетка - такими сегодня оснащаются современные истребители.

Хотя принцип работы антенной решетки не выглядит сложным, на практике радиоинженерам пришлось преодолеть огромные трудности. Так, потребовались малогабаритные, не вносящие потерь и потребляющие малую мощность фазовращатели. До появления быстродей ствующих компьютеров не менее трудно было управлять изменением фазы. Лишь на основе достижений микроэлектроники удалось построить коммутаторы, справляющиеся с этой задачей.

Дальнейшие успехи микроэлектроники предоставили в распоряжение конструкторов малогабаритные твердотельные (то есть построенные по принципу интегральных схем) передатчики и приемники, которые прямо напрашивались на роль антенных модулей. Так появились активные фазированные антенные решетки (АФАР) с модулями, усиливающими излучаемый и принимаемый сигналы (на фото справа). В целом передатчик радара, как наиболее энергетически емкое устройство авионики, оказался "размазанным" по антенной решетке и стал одним из самых надежных элементов: при поломках нескольких твердотельных модулей существенного снижения характеристик не происходит (прежде у радаров с пассивной решеткой, если передатчик выходил из строя, самолет становился "слепым").

Первый в мире радиолокатор с АФАР для истребителей построен в нашей стране в корпорации "Фазотрон - НИИР" под руководством профессора А. И. Канащенкова, причем в достаточно сложное для оборонной промышленности время.

ОСТРОТА ЗРЕНИЯ РАДАРА

Способность видеть предметы зависит не только от длины отражаемой ими электромагнитной волны. Иначе мы могли бы разглядеть любые микроорганизмы в световых лучах, длина волны которых меньше микрометра. Нам же для этого требуется микроскоп, поскольку разрешающая способность человеческого глаза ограничена.

Четкость изображения, получаемого с помощью антенной решетки (а в принципе и любой антенны), зависит от ее размеров и определяется параметром, называемым раскрывом антенны или апертурой. Угловая разрешающая способность (рад -1) приблизительно равна отношению длины излучаемой и (или) принимаемой волны к апертуре антенны. Следовательно, чем крупнее антенна и чем меньше длина волны, тем более четким получается изображение.

Чтобы увеличить апертуру антенной решетки и таким образом повысить остроту зрения радара, в первую очередь приходит мысль разнести модули по фюзеляжу самолета. Появились авиационные радары с вдольфюзеляжной антенной. Затем "в ход пошли" крылья, причем управлять фазами сигналов отдельных модулей стало сложнее: антенная решетка представляет собой плоскость, а форма самолета очень сложная. Приходилось учитывать смещение каждого модуля от плоскости и соответственно подбирать для него фазу.

И все же, как ни крути, размеры, скажем, истребителя в длину и в ширину не превышают десятка метров. Значит, достигнут предел?

Выход был найден в реализации идеи синтезированной апертуры, высказанной в 1959 году А. П. Реутовым, ныне - член-корреспондент РАН, и профессором Г. С. Кондратенковым. В обычной антенной решетке сигналы отдельных модулей суммируются (с учетом фаз) по правилам сложения векторов. Но в принципе нет разницы, снимаются ли сигналы со всех модулей одновременно или последовательно во времени с одного из них, при условии, правда, что этот модуль движется. От начала до окончания интервала синтезирования самолет может пролететь сотни метров - и такой же будет виртуальная апертура антенны. Следовательно, и разрешающая способность радара окажется высокой.

Для сравнения ниже приведены данные о разрешающей способности различных радиоэлектронных и оптических систем, а также человеческого глаза (в рад -1):

Панорамные авиационные радары - 10-50.

Авиационные радары с вдольфюзеляжной антенной - 200-300.

Человеческий глаз - 5x10 3 .

Радары с синтезированной апертурой - 10 3 -10 5 .

Оптические системы - 10 4 -10 6 .

Самое главное - точно знать положение модулей решетки в каждый момент времени. Но это и труднее всего реализовать, поскольку нужно учитывать даже вибрации корпуса самолета.

В результате радиолокационное изображение Земли не выглядит отдельными точками и пятнами на экране локатора, а приобретает характер фотографии. Такое направление в авиационной радиолокации стали называть радиовидением. Упомянутый выше радиолокационный комплекс "Имарк" осуществляет синтезирование апертуры во всех четырех частотных диапазонах.

К слову, метод синтезирования апертуры весьма перспективен для наблюдения из космоса: траектория искусственных спутников Земли очень стабильна, а длина виртуальной апертуры может достигать десятков и сотен километров.

Но, как следует из вышесказанного, с помощью решеток с синтезированной апертурой можно получить образы только неподвижных предметов: движущиеся объекты окажутся смещенными. Например, на синтезированном радиолокационном изображении движущиеся автомобили будут находиться не на шоссе, а где-то в стороне от него. Понятно, что, если для наведения огневых средств на движущиеся объекты используется синтезированное радиолокационное изображение, этот фактор необходимо специально учитывать.

ОБЛАСТИ ПРИМЕНЕНИЯ МОНИТОРИНГОВОЙ АВИОНИКИ

В условиях боевых действий:

обнаружение различных военных целей (в том числе и укрытых);

предотвращение военных и террористических акций;

обнаружение складов оружия, минных полей, военных лагерей, новых троп и дорог.

В условиях чрезвычайных ситуаций:

оценка последствий паводков, прибрежных штормов, сезонных дождей и таяния снегов;

определение границ ареалов, пораженных болезнями, нашествием насекомых и грызунов, кислотными дождями, пожарами, засухами, наводнениями;

обнаружение коронных разрядов на ЛЭП, аварий на подземных нефте-, газо- и водопроводах и канализационных сетях;

поиск мелких объектов в районах катастроф: катеров, шлюпок, обломков и т.д.;

оценка морского волнения, силы и направления ветра при выполнении аварийно-спасательных работ на море;

оценка загрязнения акваторий нефтяной пленкой толщиной от нескольких микрометров;

обнаружение в Арктике терпящих бедствие людей, укрывшихся под толщей снега или под торосами;

обнаружение утечек нефти из трубопроводов.

Для научных целей:

проведение гидрологических и гляциологических наблюдений, оценка влажности почв, снежного покрова, состояния айсбергов, ледников, вечной мерзлоты;

картография морских льдов и оценка эволюции льдин;

дистанционная археология (обнаружение районов поселений древних культур и ведущих туда бывших транспортных путей);

контроль за популяциями вымирающих видов флоры и фауны;

проведение топографических и литологических измерений;

оценка динамики земной коры;

оценка активности вулканов и последствий вулканической деятельности, включая течения лавы и грязевых потоков;

оценка сейсмической активности и прогнозирование зон разломов;

картография суши и морской поверхности.

Для хозяйственных целей:

оценка характеристик окружающей среды (от регионального масштаба до глобального);

точное картографирование дорог;

определение наличия наземных и подземных биомасс;

обнаружение нелегальных дорог в горных и лесных районах и заповедниках, выявление незаконных промыслов;

описание лесных, сельскохозяйственных и рыболовных экосистем;

классификация и оценка состояния почв, болот, озер;

прогнозирование урожаев;

оценка состояния экосистем полярных районов;

определение состояния лесных экосистем;

обнаружение легальных и нелегальных лесных вырубок;

обнаружение предвестников землетрясений;

определение зон подтопления в районах водохранилищ;

определение зон засоления при обмелении водоемов и эксплуатации мелиоративных сооружений;

оценка экологического состояния открытых разработок полезных ископаемых;

обнаружение объектов и сооружений, скрытых густой растительностью или заглубленных в грунт;

оценка геоэкологических процессов, связанных с распространением загрязненных почвенных вод;

выявление скрытого процесса подпочвенного подтопления хозяйственных земель.

Авионика (от авиация и электроника, оно же БРЭО - бортовое радиоэлектронное оборудование) - совокупность всех электронных систем, разработанных для использования в авиации в качестве бортовой электроники. На базовом уровне это системы коммуникации, навигации, отображения и управления различными устройствами - от сложных (например, радара) до простейших (например, поискового прожектора полицейского вертолёта). В отечественной системе гражданского воздушного флота принято деление на специалистов АиРЭО (Авиационное и радиоэлектронное оборудование) и на специалистов по самолёту и двигателю (СиД).

Термин «авионика» появился на Западе в начале 1970. К этому моменту электронная техника достигла такого уровня развития, когда стало возможно применять электронные устройства в бортовых авиационных системах, и за счет этого существенно улучшать качественные показатели применения авиации. Тогда же появились и первые бортовые электронные вычислители (компьютеры), а также принципиально новые автоматизированные и автоматические системы управления и контроля.

Первоначально основным заказчиком и потребителем авиационной электроники были военные. Логика развития военной авиации быстро привела к ситуации, когда военные ЛА не могут не только выполнять боевые задачи без использования электронных технических средств, но даже и просто летать на требуемых режимах полёта. Сейчас стоимость систем авионики составляет большую часть общей стоимости летательного аппарата. К примеру, для истребителей F-15E и F-14 стоимость авионики составляет около 20 % от общей стоимости самолёта. В настоящее время электронные системы широко применяются и в гражданской авиации, например, системы управления полетом и пилотажно-навигационные комплексы.

Системы, обеспечивающие управление самолётом[править | править вики-текст]

Системы связи

Системы навигации

Системы индикации

Системы управления полетом (FCS)

Системы предупреждения столкновений (TCAS)

Системы метеонаблюдения

Системы управления самолётом

Системы регистрации параметров полета (средства объективного контроля, или бортовые самописцы)

7.Структура и состав авионики

8.Новые технологии в авионике и авиастроении

9. Физические свойства объектов с ограниченным количеством атомов и молекул. Интегральные технологии.

До последнего времени технология основывалась на удалении лишнего материала из заготовки подобно тому, как скульптор удаляет куски мрамора, создавая задуманный образ. На смену такому процессу пришла молекулярно-инженерная технология, которая позволит строить приборы атом за атомом по аналогии с тем, как дом складывают по кирпичику. Уже сейчас молекулярно-инженерная технология находит применение, например, в производстве приборов на основе молекулярных пленок, молекулярно-лучевой эпитаксии, ионно-зондовой и электронно-стимулированной управляемой имплантации. Для того чтобы молекулярно-инженерная микротехнология стала реальностью, следует развивать соответствующие методы.

Использование в технологическом производстве лучевых методов (электронно-лучевых, ионно-лучевых, рентгеновских) совместно с вакуумной технологией позволяет получать приборы с размерами элементов до 10–25 нм. Переход в этот диапазон требует решения фундаментальных вопросов, связанных с новыми физическими принципами работы приборов и ограничениями, свойственными планарным процессам.

Вследствие большой напряженности электрического поля, возникающего в приборах с такими малыми размерами, механизмы переноса дырок и электронов принципиально изменяются Скорость электронов становится очень большой. Время между двумя столкновениями сильно уменьшается. Появляется возможность открытия новых физических явлений и построения приборов на их основе. Естественно, что эволюция технологических методов будет способствовать широкому проникновению научных принципов в разработку интегральных схем и поиску физических эффектов для их построения.

С развитием новых технологических процессов размеры рукотворных структур становятся соизмеримыми с бактериями, вирусами, макромолекулами.

В результате взаимодействия ускоренных пучков ионов с веществом можно направленно изменять их физико-химические и электронно-физические свойства, что позволяет получать приборы с заданными характеристиками.

Сфокусированные ионные потоки – это уникальный инструмент для прецизионной обработки всех известных материалов. Такой метод позволяет создавать принципиально новые конструкции приборов. Разрабатываются различные ионно-лучевые установки. Рентгеновские установки позволяют реализовать тиражирование изображений с субмикронными размерами элементов, недоступных световой оптике. Современная технология осаждения тонких пленок позволяет с точностью до 10 нм (это только на два порядка больше диаметра атома) выдерживать размер микроэлектронного прибора в измерении, перпендикулярном плоскости подложки. Формирование с такой же точностью рисунка на плоскости значительно сложнее. Оно обычно осуществляется с помощью процесса литографии на основе технологии печати.

С развитием микроэлектроники происходит усложнение схем и уменьшение размеров рисунка. Реализуется возможность получения линий шириной 0,5 мкм с допусками 0,1 мкм. Для выполнения этих требований необходима разработка систем формирования (синтезирования) рисунка с очень высокой разрешающей способностью. Рисунок синтезируется экспонированием (светом, рентгеновским излучением, электронным или ионным пучком с последующим проявлением скрытого изображения) соответствующих участков тонкого слоя резистивного материма, нанесенного на пластину, например, кремния.

Одновременно идет поиск новых применений субмикронной литографии. Обнаружено, что можно регистрировать световой поток не с помощью фотодиода или другого подобного прибора, а с помощью проводников, чередование которых идет с шагом, кратным длине волны света, а свет падает вдоль этой решетки. Прибор работает как антенна, в элементах которой наводится электрический ток. Размеры элементов такого приемника таковы, что они не могут быть изготовлены традиционным способом фотолитографии. На помощь приходит микролитография – электронная, ионная и рентгеновская.

Ожидается, что в ближайшее время промышленность освоит интегральные схемы с миниатюрными размерами отдельных деталей 0,2–0,3 мкм (200– 300 нм). Число таких элементов в схеме – полупроводниковой пластине площадью несколько квадратных миллиметров – достигнет десятков миллионов, т. е. увеличится по крайней мере в 1000 раз. Возможности интегральных схем при этом возрастут не в 1000 раз, а гораздо больше. Предполагается, что в ближайшие годы число элементов на кристалле достигнет 7 млрд, правда, такой прогноз называют осторожным.

Сейчас основной материал полупроводниковых приборов – кремний. Переход к наноэлектронике заставляет обратиться и к другим материалам: арсениду галлия, фосфиду индия, кадмий – ртуть – теллуру и др.

Термин «авионика» является заимствованным из английского языка и в нашей стране не является популярным даже у авиационных специалистов. Термином этим принято обозначать все электронные системы – от самых сложных до простейших, установленные на борту самолета.

Современная авиационная техника требует качественного и высокопрофессионального подхода к вопросам технического обслуживания и ремонта. Ведь от безупречной работы оборудования зависит комфорт и безопасность пассажиров и экипажа самолета, а также правильная организация непрерывности полетов воздушных судов.

В отечественной авиации принята такая классификация оборудования на борту воздушного судна:

  • оборудование летальных аппаратов;
  • БРЭО – оборудование, которое в процессе функционирования излучает или принимает радиоволны;
  • авиационное оборудование – содержит электронные составляющие, использующие электрический ток и не использующий радиоволны.

Немного истории

В семидесятых годах прошлого века термин «авионика» впервые вошел в лексикон специалистов западных стран. Развитие электроники достигло достаточно высокого уровня, позволяющего использовать ее достижения в авиационной промышленности.

Первые бортовые компьютеры и электронные системы контроля и управления оказались незаменимыми помощниками в организации полетов воздушных судов.

Более активно новые технологии внедрялись в военной авиации. И очень быстро развитие этого направления привело к тому, что боевые самолеты стали своеобразной платформой для различных датчиков и электронных систем.

На сегодняшний день порядка 80 процентов затрат на производство военного самолета – это затраты на авионику. Но и в гражданской авиации стоимость электронного оборудование составляет значительную часть сметы затрат на производство воздушного судна.

  • Система связи – в этом компоненте найдены потенциально уязвимые места и специалисты авиапрома заняты их устранением.
  • Система навигации современного уровня помогает пилоту в ведении самолета по заданному маршруту и в маневрировании при заходе на посадку.
  • Оборудование для регистрации параметров полета. Бортовые самописцы позволяют проанализировать правильность действий экипажа, условия полета и особенности функционирования оборудования на борту воздушного судна.

Перечень этот далеко не полный, но дает общее представление и понятие о смысле, вкладываемом в понятие «авионика».

Системы управления боевым самолетом. Ударная сила:

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw