Схема импульсного блока питания унч. Импульсный источник питания для усилителей

Главная / Покупка и продажа

Импульсный блок питания для УНЧ сконструирован для обеспечения напряжением питания двух канальный УМЗЧ. БП рассчитан на работу усилителя с выходной мощностью 200 Вт на каждый канал. Данное устройство состоит из двух печатных плат. На одной плате реализован фильтр сетевого напряжения, электромагнитное реле, трансформатор, диодный мост с фильтрующим конденсатором 1000 мкФ х 25v в его цепи. На другой плате собран модуль управления, трансформатор выпрямителя, а также в цепи фильтра конденсаторы и дроссели.

Биполярные транзисторы КТ626, а также мощные 2SK1120 MOSFET либо КП707В2 должны быть установлены на радиаторах с достаточной площадью рассеивания тепла. Наиболее эффективными радиаторами охлаждения являются теплоотводы из толстого алюминия, прошедшие фрезерную обработку. Их эффективность заключается в том, что помимо охлаждения электронных компонентов, они еще являются боковыми элементами корпуса усилителя. Модуль управления мощными выходными ключами смонтирован на небольшой самостоятельной плате, которая в свою очередь вмонтирована в модуль выпрямителя.

Модернизация ИБП

Чтобы обеспечить более корректную и надежную работу конструкции, импульсный блок питания для УНЧ был несколько модернизирован. В частности во вторичных обмотках трансформатора были установлены шунты в виде подавляющей помехи RC-цепи. Также была увеличена емкость фильтрующих конденсаторов до 10000 мкФ х 50v и зашунтированны конденсаторами 3,3 мкф 63v. Которые имеют очень малые потери и высокое сопротивление изоляции. Защита на входе не была задействована, но в случае необходимости ее можно применить в качестве защиты от пикового тока. Для этого нужно подать сигнал на вход из цепи шунта либо от трансформатора по току.

Предупреждение

Особое внимание! Все силовые тракты данного блока питания, за исключением вторичных цепей, находятся по высоким потенциалом сетевого напряжения, представляющего опасность для жизни! В процессе налаживания конструкции необходимо соблюдать максимально возможную осторожность. Желательно при настроечных работах, устройство подключить к сети через разделительный трансформатор.

Перед тем как впервые запустить импульсный блок питания, предохранитель на 2А в цепи напряжения 320v устанавливать пока не нужно. Вначале нужно произвести отладку схемы управления, а уже потом на место предохранителя 2А устанавливается лампа накаливания 220v мощностью 60 Вт. Но наиболее эффективный способ, при котором гарантируется целостность транзисторов — это включить устройство через понижающий напряжение трансформатор. Только когда полностью будет выполнены наладочные работы, тогда предохранитель ставится на место. Теперь импульсный блок питания можно испытать с нагрузкой.


На снимке: модуль инвертора, выпрямителя и цепи фильтров


На снимке: модуль фильтра сетевого напряжения и выпрямителя


На снимке: компоновка силовых ключей и диодов

Трансформатор

Трансформатор Т1 намотан на трех кольцах диаметром 45 мм из феррита 2000НМ1. Первичная обмотка содержит 2×46 витков изолированного провода 0,75 мм2 (мотается сразу двумя проводами). Вторичная обмотка намотана косой из 16 проводов диаметром 0,8 мм. Она содержит шесть витков, после намотки она делится на две группы, начала одной группы соединяются с конном другой. Дроссели DB3 и DR2 намотаны на ферритовом стержне 8 мм и выполнены проводом D=1,2 мм.


Для изготовления блоков питания усилителей мощности как правило применяются низкочастотные 50-герцовые трансформаторы. Они надежные, не создают вч-помех и сравнительно просты в изготовлении. Но есть и минусы – габариты и вес. Иногда такие недостатки оказываются решающими и приходится искать другие решения. Частично вопрос габаритных размеров (точнее, только высоты) решается применением торроидального трансформатора. Но такой трансформатор из-за сложности в изготовлении стоит немалых денег. И при этом все так же имеет значительный вес. Решением данной проблемы может стать использование импульсного блока питания.

Но тут свои особенности : сложность в изготовлении, или переделке. Чтобы приспособить под питание УМ компьютерный блок питания, необходимо перепаять половину платы и скорее всего, перемотать вторичную обмотку трансформатора. Но современная китайская промышленность выпускает в большом количестве 12-вольтовые блоки питания Ташибра и им подобные, обещая приличную выходную мощность, 50, 100, 150 Вт и выше. При этом стоимость таких блоков питания смешная.

На рисунке пара таких блоков, выше BUKO, ниже Ultralight, но по сути та же самая Ташибра. Они имеют небольшие отличия (возможно, были сделаны в разных провинциях Китая): вторичная обмотка Ташибры имеет 5 витков, а в BUKO – 8 витков. Кроме того, у Ultralight плата немного больше, предусмотрены места для установки дополнительных деталей. Несмотря на это, переделываются они идентично. Во время процесса доработки необходимо быть предельно аккуратным, поскольку на плате присутствует высокое напряжение, после диодного моста это 300 вольт. Кроме того, если случайно закоротить выход, то сгорят транзисторы.

Теперь о схеме.


Схема блоков питания от 50 до 150 ватт одинаковая, отличие только в мощности использованных деталей.

Что нужно доработать?
1. Нужно подпаять электролитический конденсатор после диодного моста. Емкость конденсатора должна быть как можно больше. При данной переделке был применен конденсатор 100мкФ на напряжение 400вольт.
2. Нужно заменить обратную связь по току обратной связью по напряжению. Для чего это нужно? Для того, чтобы блок питания запускался без нагрузки.
3. Если это необходимо, то перемотать трансформатор.
4. Нужно будет выпрямить выходное переменное напряжение диодным мостом. Для этих целей можно применить отечественные диоды КД213, или импортные, высокочастотные. Лучше конечно же Шоттки. Также необходимо сгладить пульсации на выходе конденсатором.

Вот схема переделанного блока питания.


Синим кружочком отмечена катушка обратной связи по току. Чтобы ее отключить, нужно обязательно выпаять один конец, чтобы не создать короткозамкнутой обмотки. После этого можно смело замыкать контактные площадки катушки на плате. После этого необходимо организовать обратную связь по напряжению. Для этого берется кусок провода от витой пары и на силовой трансформатор мотается 2 витка. Затем тем же проводом мотается 3 витка на трансформатор связи Т1. После этого к концам этого провода припаивается резистор 2,4 - 2,7 Ом, мощностью 5 – 10 Ватт. К выходу преобразователя подключается 12-вольтовая лампочка, а в разрыв провода питания включается лампочка на 220 Вольт, 150 Ватт. Первая лампочка используется в качестве нагрузки, а вторая в качестве ограничителя потребляемого тока. Включаем преобразователь в сеть. Если сетевая лампочка не засветилась, значит с преобразователем все нормально и можно эту лампочку убирать. Снова включаем в сеть, уже без нее. Если 12-вольтовая лампочка на нагрузке не засветилась, значит не угадали с направлением намотки катушки связи на трансформаторе связи Т1 и ее нужно будет намотать в другую сторону. Не забываем после отключения питания разряжать сетевой конденсатор резистором на 1 кОм.

Блок питания для УНЧ обычно биполярный, в данном случае необходимо получить 2 напряжения по 30 вольт. Вторичная обмотка силового трансформатора имеет 5 витков. При выходном напряжении 12 вольт получается 2,4 вольта на один виток. Чтобы получить 30 вольт, нужно намотать 30 Вольт/2,4Вольт = 12,5 витков. Следовательно, необходимо намотать 2 катушки по 12,5 витков. Для этого необходимо отпаять трансформатор от платы, временно смотать два витка обратной связи по напряжению и смотать вторичную обмотку. После этого наматываются простым многожильным проводом рассчитанные две вторичные обмотки. Вначале мотается одна катушка, потом другая. Соединяются два конца разных обмоток – это будет нулевой вывод.
Если будет необходимо получить другое напряжение, мотается больше/меньше витков.

Частота работы блока питания с катушкой связи по напряжению где-то 30 кГц.

Затем собирается диодный мост, подпаиваются электролиты и параллельно им керамические конденсаторы для гашения высокочастотных помех. Вот еще варианты соединения вторичных обмоток.

Усилитель звуковой частоты (УЗЧ), или усилитель низкой частоты (УНЧ) является одним из самых распространенных электронных устройств. Все мы получаем звуковую информацию, используя ту или иную разновидность УНЧ. Не все знают, но усилители низкой частоты используются также в измерительной технике, дефектоскопии, автоматике, телемеханике, аналоговой вычислительной технике и других областях электроники.

Хотя, конечно же, основное применение УНЧ – донести до нашего слуха звуковой сигнал с помощью акустических систем, преобразующих электрические колебания в акустические. И сделать это усилитель должен максимально точно. Только в этом случае мы получаем то удовольствие, которое доставляют нам любимая музыка, звуки и речь.

С появления в 1877 фонографа Томаса Эдисона до настоящего времени, ученые и инженеры боролись за улучшение основных параметров УНЧ: прежде всего за достоверность передачи звуковых сигналов, а также за потребительские характеристики, такие как потребляемая мощность, размеры, простота изготовления, настройки и использования.

Начиная с 1920-ых годов сформировалась буквенная классификация классов электронных усилителей, которая используется и по сей день. Классы усилителей отличаются режимами работы применяемых в них активных электронных приборов – электронных ламп, транзисторов и т.д. Основными «однобуквенными» классами являются A, B, C, D, E, F, G, H. Буквы обозначений классов могут сочетаться в случае совмещения некоторых режимов. Классификация не является стандартом, поэтому разработчики и производители могут использовать буквы достаточно произвольно.

Особое место в классификации занимает класс D. Активные элементы выходного каскада УНЧ класса D работают в ключевом (импульсном) режиме, в отличие от остальных классов, где большей частью используется линейный режим работы активных элементов.

Одним из основных преимуществ усилителей класса D является коэффициент полезного действия (КПД), приближающийся к 100%. Это, в частности, приводит к уменьшению рассеиваемой активными элементами усилителя мощности, и, как следствие, уменьшению размеров усилителя за счет уменьшения размеров радиатора. Такие усилители предъявляют значительно меньшие требования к качеству источника питания, который может быть однополярным и импульсным. Другим преимуществом можно считать возможность применения в усилителях класса D цифровых методов обработки сигнала и цифрового управления их функциями – ведь именно цифровые технологии преобладают в современной электронике.

С учетом всех этих тенденций компания Мастер Кит предлагает широкий выбор усилителей класса D , собранных на одной и той же микросхеме TPA3116D2, но имеющих различное назначение и мощность. А для того, чтобы покупатели не тратили время на поиски подходящего источника питания, мы подготовили комплекты усилитель + блок питания , оптимально подходящие друг к другу.

В этом обзоре мы рассмотрим три таких комплекта:

  1. (Усилитель НЧ D-класса 2х50Вт + источник питания 24В / 100Вт / 4,5A);
  2. (Усилитель НЧ D-класса 2х100Вт + источник питания 24В / 200Вт / 8,8A);
  3. (Усилитель НЧ D-класса 1х150Вт + источник питания 24В / 200Вт / 8,8A).

Первый комплект предназначен, прежде всего для тех, кому необходимы минимальные размеры, стереозвук и классическая схема регулировки одновременно в двух каналах: громкость, низкие и высокие частоты. Он включает в себя и .

Сам двухканальный усилитель имеет беспрецедентно маленькие размеры: всего 60 х 31 х 13 мм, не включая ручек регуляторов. Размеры блока питания 129 х 97 х 30 мм, вес – около 340 г.

Несмотря на небольшие размеры, усилитель отдает в нагрузку 4 ома честные 50 ватт на канал при напряжении питания 21 вольт!

В качестве предварительно усилителя применена микросхема RC4508 – двойной специализированный операционный усилитель для аудиосигналов. Он позволяет идеально согласовать вход усилителя с источником сигнала, имеет крайне низкие нелинейные искажения и уровень шума.

Входной сигнал подается на трехконтактный разъем с шагом контактов 2,54 мм, напряжение питания и акустические системы подключаются с помощью удобных винтовых разъемов.

На микросхему TPA3116 с помощью теплопроводящего клея установлен небольшой радиатор, площади рассеяния которого вполне хватает даже на максимальной мощности.

Обращаем ваше внимание на то, что с целью экономии места и уменьшения размеров усилителя отсутствует защита от неверной полярности подключения источника питания (переполюсовки), поэтому будьте внимательны при подаче питания на усилитель.

С учетом небольших размеров и эффективности сфера применения комплекта весьма широка – от замены устаревшего или вышедшего из строя старого усилителя до очень мобильного звукоусилительного комплекта для озвучивания мероприятия или вечеринки.

Пример использования такого усилителя приведен .

На плате отсутствуют отверстия для крепления, но для этого с успехом можно использовать потенциометры, имеющие крепления под гайку.

Второй комплект включает в себя на двух микросхемах TPA3116D2, каждая из которых включена в мостовом режиме и обеспечивает до 100 ватт выходной мощности на канал, а также с выходным напряжением 24 вольта и мощностью 200 ватт.

С помощью такого комплекта и двух 100-ваттных акустических систем можно озвучить солидное мероприятие даже вне помещения!

Усилитель снабжен регулятором громкости с выключателем. На плате установлен мощный диод Шоттки для защиты от переполюсовки блока питания.

Усилитель снабжен эффективными фильтрами низкой частоты, установленными согласно рекомендациям производителя микросхемы TPA3116, и обеспечивающими совместно с ней высокое качество выходного сигнала.

Питающее напряжение и акустические системы подключаются с помощью винтовых разъемов.

Входной сигнал может быть подан как на трехконтактый разъем с шагом 2,54 мм, так и с помощью стандартного аудиоразъема типа Jack 3,5 мм.

Радиатор обеспечивает достаточное охлаждение обеих микросхем и прижимается к их термопадам винтом, расположенным с нижней части печатной платы.

Для удобства использования на плате также установлен светодиод зеленого свечения, сигнализирующий о включении питания.

Размеры платы, с учетом конденсаторов и без учета ручки потенциометра составляют 105 х 65 х 24 мм, расстояния между крепежными отверстиями - 98,6 и 58,8 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Третий комплект представляет собой l и с выходным напряжением 24 вольта и мощностью 200 ватт.

Усилитель обеспечивает до 150 ватт выходной мощности на нагрузке 4 ома. Основное применение этого усилителя – построение качественного и энергоэффективного сабвуфера.

По сравнению со многими другими специализированными сабвуферными усилителями, MP3116btl отлично раскачивает низкочастотные динамики достаточно большого диаметра. Это подтверждается отзывами покупателей рассматриваемого УНЧ. Звук получается насыщенный и яркий.

Радиатор, занимающий большую часть площади печатной платы обеспечивает эффективное охлаждение TPA3116.

Для согласования входного сигнала на входе усилителя применена микросхема NE5532 – двухканальный малошумящий специализированный операционный усилитель. Он имеет минимальные нелинейные искажения и широкую полосу пропускания.

На входе также установлен регулятор амплитуды входного сигнала со шлицем под отвертку. С его помощью можно подстроить громкость сабвуфера под громкость основных каналов.

Для защиты от переполюсовки питающего напряжения на плате установлен диод Шоттки.

Питание и акустические системы подключаются с помощью винтовых разъемов.

Размеры платы усилителя 73 х 77 х 16 мм, расстояния между крепежными отверстиями – 69,4 и 57,2 мм. Размеры блока питания 215 х 115 х 30 мм, вес около 660 г.

Во все комплекты включены импульсные источники питания компании MEAN WELL.

Основанная в 1982 году, компания является ведущим производителем импульсных источников питания в мире. В настоящее время корпорация MEAN WELL состоит из пяти финансово независимых компаний-партнеров на Тайване, в Китае, США и Европе.

Продукция MEAN WELL характеризуется высоким качеством, низким процентом отказов и длительным сроком службы.

Импульсные источники питания, разработанные на современной элементной базе, удовлетворяют самым высоким требованиям по качеству выходного постоянного напряжения и отличаются от обычных линейных источников малым весом и высоким КПД, а также наличием защиты от перегрузки и короткого замыкания на выходе.

Источники питания LRS-100-24 и LRS-200-24, используемые в представленных комплектах, имеют светодиодный индикатор включения и потенциометр для точной регулировки выходного напряжения. Перед подключением усилителя проверьте выходное напряжения, и при необходимости выставьте его уровень на 24 вольта с помощью потенциометра.

В примененных источниках используется пассивное охлаждение, поэтому они совершенно бесшумны.

Необходимо отметить, что все рассмотренные усилители могут быть с успехом применены для конструирования звуковоспроизводящих систем для автомобилей, мотоциклов и даже велосипедов. При питании усилителей напряжением 12 вольт выходная мощность будет несколько меньше, но качество звука не пострадает, а высокий КПД позволяет эффективно питать УНЧ от автономных источников питания.

Также обращаем ваше внимание на то, что все рассмотренные в этом обзоре устройства можно приобрести по отдельности и в составе других комплектов на сайте .

Существует множество схем ИИП, особенно на просторах интернета, а вот рабочих мало, единицы. Сколько было собрано, сколько сожжено дорогостоящих полевых транзисторов и микросхем! Некоторые блоки удавалось заставить работать, некоторые нет. Приведенная ниже схема начинает работать сразу, некритична к выбору деталей, практически не дает помех, доступна для сборки даже начинающим радиолюбителям.

На первый взгляд схема кажется сложной, но при поблочном рассмотрении все становится ясно и просто. Все детали недороги, легкодоступны, имеют множество замен, большинство деталей имеется в компьютерных блоках питания. Было собрано четыре блока, разной конфигурации, на разных печатных платах, все заработали сразу и работают до сих пор. Последний блок предназначен для известного усилителя « ». За основу взята схема , дополнена устройством плавного запуска, переведена на современную элементную базу. Некоторые элементы были перерасчитаны для получения большей мощности и снижения пульсаций выпрямленного напряжения.

Технические характеристики:
Номинальная мощность: 500Вт
Частота преобразования: 100 кГц
Выходное напряжение: +/ - 65В
КПД 0,75

Мощность блока при использовании этих же деталей легко может достигать 800Вт, требуется только перерасчет трансформатора ТР2.

Краткое описание работы

Задающий генератор собран на элементах DD1, подстроечным резистором частота меняется в пределах 100-200 кГц. Триггер на элементе DD2 снижает частоту вдвое и формирует импульсы с более крутыми фронтами. Через комплементарный эмиттерный повторитель на транзисторах VT3 – VT4 импульсы проходят на трансформатор ТР1 и управляют мощными транзисторами VT5,VT6. Задающий генератор питается от отдельного стабилизатора собранного на элементах С5,С6,С7,С8 диодах D7-D10 и транзисторе VT2. Устройство плавного запуска выполнено на тиристоре VD1. При включении блока в сеть, конденсатор фильтра C10 заряжается через резистор R5. Конденсатор С4 заряжается через резисторы R3 R4. При достижении на этом конденсаторе напряжения примерно 1В, тиристор открывается и шунтирует R5.
Сетевой фильтр и выпрямитель особенностей не имеют. За выпрямителем следует транзисторный фильтр на транзисторе VT1, который уменьшает пульсации выпрямленного напряжения в 125 раз, для того, что бы исключить модуляцию прямоугольного сигнала напряжением частотой 100Гц.

Напряжение, полученное с трансформатора ТР2 (обмотки 2 и 3) выпрямляется диодным мостом D13-D16 и через дроссель L2 поступает на выходной фильтр C16,C17,L3,L4,C18,C19,C20,C21. Дроссель L2 необходим главным образом для ограничения зарядного тока через диоды моста, т.к. в выходном фильтре применены конденсаторы большой емкости. Более подробно с работой схемы можно ознакомиться в .

Принципиальная схема:

Конструкция и детали

Конструктивно блок выполнен на трех печатных платах: на одной - силовая часть блока с устройством плавного запуска и транзисторным фильтром, на другой - задающий генератор с собственным блоком питания, на третьей трансформатор ТР2 и выходной фильтр. Выходной фильтр может быть собран непосредственно на плате усилителя, тогда ТР2 крепится к шасси. Компановка может быть различной. Рисунки печатных плат 1 и 2 прилагаются. Ввиду чрезвычайной простоты плата выходного фильтра не разрабатывалась. При использовании разных деталей (диоды, конденсаторы) рисунок платы будет индивидуальным в каждом конкретном случае. Конденсаторы С14, С15 и резисторы R4,R5,R7,R11,R12 установлены на плате стоя. Конденсаторы С14, С15 и резисторы R11,R12 в верхней точке соединяются и образуют точку подключения нижнего по схеме вывода обмотки 1 трансформатора ТР2. Тиристор VD1 и транзистор VT1 установлены на одном радиаторе через изолирующие прокладки. При использовании тиристора в другом корпусе можно установить его на отдельный радиатор.
При сборке нужно стараться все соединения делать возможно короче.

О деталях

Микросхемы серии 511 заменять другими не следует. Можно использовать импортный аналог: для К511ЛА1 аналогом является Н102, для К511ТВ1 аналог Н110.

Транзисторы. На месте транзисторов VT3, VT4 можно использовать практически любые высокочастотные транзисторы: ВС639 и ВС640, ВС635 и ВС636, ВС337 и ВС638, КТ 315 и КТ361, КТ502 и КТ503 и др. желательно только подобрать их с наибольшим коэффициентом усиления.

Транзисторы VT5,VT6 лучше выбрать в большом корпусе. При использовании транзисторов в корпусе ТО-220 необходимо скорректировать печатную плату. Можно их сделать и выносными. Для замены подойдут транзисторы серии 2SC – 3996 – 3998, 5144, 2204, 3552, 3042, 3306, 5570, 2625 и др. с напряжением не менее 400В и током коллектора не менее 10А. Их желательно подобрать с близким коэффициентом усиления. При установке этих транзисторов на общий радиатор надо использовать слюдяные прокладки смазанные пастой КТП-8. Площадь радиатора для каждого транзистора должна быть не менее 65см2. Транзистор VT1 можно заменить на КТ898А или А1. Это транзисторы дарлингтона, стоят в коммутаторах транзисторных систем зажигания. Можно поставить транзисторы серии 2SC указанные выше, но придется установить их на отдельный радиатор площадью не менее 150см2. Кроме того придется пересчитать вторичную обмотку трансформатора ТР2, т.к. на транзисторе будет потеря напряжения порядка 20В. Лучше самостоятельно сделать составной транзистор, добавив еще один, например MJE13005,13007,13009 и т.п. Участок схемы приводится. Вместо транзистора КТ815Г можно поставить КТ817Г или BD135, BD137, BD139.

Фрагмент:

Диоды. Диодный мост BR1010 можно заменить на другой, не менее 10А - 400В или отдельные диоды с такими же характеристиками. Мост снабжен небольшим радиатором.
Диоды D11,D12 – любые быстрые на напряжение не менее 400В. Подойдут FR104 – 107, FR154 - FR157, SF16, из отечественных можно поставить КД104А. D5 – FR157, SF16. Диоды 1N4007 можно заменить на КД105Г или другие на ток более 0,5А и напряжением 400В и больше. Диоды КД2997А,Б можно заменить на КД2999А,Б или импортные быстрые диоды с напряжением не менее 200В и током 15 - 20А. В крайнем случае, можно поставить КД213, но по две штуки в плечо параллельно. Из импортных подойдут 15ETH06, 30ETH06, 30EPH06, BYW29-500 и др. Диоды Шоттки можно использовать, если выходное напряжение не превышает 60В. Смотрите даташиты.

Стабилитрон D17 любой на 15В, например КС515 или импортный. Можно составить из двух, например КС175А, Д814А.

Тиристор ВТ151 можно заменить другим с максимальным током не менее 10А и напряжением 400В, например КУ202Н1.

Конденсаторы С2,С3С5,С9,С13-С19 пленочные, С1,С12 – керамика. Конденсаторы С14, С15 можно поставить и меньшей емкости, но не менее 1мкФ. Они должны быть одинаковы и обязательно пленочными, на напряжение не менее 250В. Емкость С2,С3,С9 не критична и ее можно менять. Лучше в большую сторону. Конденсатор С10 составлен из двух емкостью 220 и 330 мкФ 400В. Если блок будет иметь другую мощность, эти конденсаторы следует ставить из расчета 1мкФ на 1Вт мощности. Хотя и используется транзисторный фильтр, емкость этих конденсаторов не следует сильно уменьшать, что бы сохранить жесткость нагрузочной характеристики блока. Конденсатор С8 может быть емкостью 100 – 200мкФ. Конденсаторы С16, С17 могут быть составлены из нескольких меньшей емкости, что даже лучше. Чем больше общая емкость – тем лучше, в разумных пределах. Для облегчения работы по высокой частоте конденсаторов С20, С21 желательно припаять непосредственно к их выводам с обратной стороны платы керамические конденсаторы емкостью 0,033 – 0,1мкФ.

Резисторы - указанной на схеме мощности. R1 – желательно многооборотный. R6 служит для разрядки конденсаторов, номинал 390 – 910кОм. Резисторы R11, R12 должны быть одинаковыми и могут быть номиналом от 47 до 200 кОм. Суммарное сопротивление резисторов R3 и R4 должно быть 43 – 46 кОм.

Дроссели и трансформаторы. Дроссель L1 намотан на кольце из феррита марки М2000 наружным диаметром от 20мм. Намотка ведется в один слой сразу двумя проводами диаметром 0.8-1,2 мм до заполнения. Можно использовать и Ш-образный сердечник, например от блока питания телевизора. Не критично. Дроссель L2 намотан проводом диаметром 1,2мм на чашечном сердечнике из феррита марки М2000 диаметром 35 и более мм. Намотка ведется в два провода до заполнения каркаса. Так как дроссель работает на постоянном токе, в зазор необходимо поместить диэлектрическую прокладку толщиной примерно 0,3мм. Можно попробовать намотать на кольцевой сердечник от дросселя групповой стабилизации компьютерного блока питания. Дроссели L3 L4 готовые из компьютерного блока питания, те, что намотаны толстым проводом. Должны быть одинаковыми. Их можно изготовить самостоятельно, намотав 10-20 витков провода диаметром 1.2мм на кусочки круглого феррита от антенны радиоприемника длиной 25мм.

Трансформатор ТР1 изготовлен на кольце из феррита марки М2000 типоразмера 16*8*6 и содержит 90витков провода ПЭЛШО 0,12 намотанных сразу тремя проводами. Типоразмер, марка провода и число витков не критичны. Для облегчения работы этот трансформатор можно намотать на чашечном магнитопроводе диаметром примерно 20мм так же в три провода. Если нет ничего подходящего, можно намотать и на небольшом Ш-образном ферритовом магнитопроводе.

Самая ответственная часть работы – намотка трансформатора ТР2. Он намотан на сердечнике, состоящего из двух колец типоразмера 40*25*11. Кольца нужно склеить между собой, грани закруглить крупной наждачной бумагой. Затем магнитопровод обматывается двумя слоями лакоткани или фторопластовой ленты. Первичная обмотка намотана в два провода (в параллель) диаметром 0,8мм и содержит 26 витков, равномерно распределенных по кольцу. Поверх первичной обмотки снова два слоя лакоткани. Вторичная обмотка(2,3) мотается в три провода диаметром 0,8мм и содержит 2*13 витков. Порядок работы таков: берем провод необходимой длины, складываем его в 6 слоев, слегка скручиваем для удобства, и мотаем 13 витков равномерно поверх первичной обмотки. Затем прозвонкой разделяем его на две части и соединяем начало одной части с концом другой. Так мы получим две обмотки в три провода и точку соединения. Снова обматываем все лакотканью. Готовый трансформатор можно пропитать парафином, нитролаком или эпоксидной смолой. Но в последнем случае он получится неразборным. Для более точного подбора напряжения необходимо сразу после намотки первичной обмотки намотать 10 витков любого провода, подключить к диодному мосту и замерить напряжение. Затем вычислить необходимое количество витков. Получается примерно 5В на один виток.

При намотке всех дросселей и трансформаторов крайне важно соблюдать начала и концы обмоток. Начала обмоток на схеме помечены точками.

Если нужны другие выходные напряжения, нужно пересчитать количество витков вторичной обмотки. Обмоток может быть и несколько. Если нужно рассчитать трансформатор ТР2 на другую мощность или на другой магнитопровод, необходимо воспользоваться .

Из многих программ выбрана именно эта, как простая и дающая реальные достоверные результаты.

Налаживание начинаем с генератора импульсов. Для этого к сети подключаем только маленькую печатную плату, отдельно от большой. Осциллографом наблюдаем на обмотках 2 и 3 трансформатора ТР1 противофазные прямоугольные импульсы. Затем резистором R1 устанавливаем частоту этих импульсов равной 100 кГц. У многих нет осциллографа, что делать? Берем плату с припаянным сетевым проводом и идем в ближайшее телеателье. Наверняка не откажут в одном измерении. После этого можно подключать и силовую часть блока питания. Сделать это лучше включив в разрыв сетевого провода лампу накаливания мощностью 75-100 Вт. Лампа должна кратковременно загореться и погаснуть. Если горит постоянно, проверяйте правильность сборки. Если все в норме – лампу убираем. Блок без нагрузки включать нельзя, поэтому на время проверки нагрузим его двухватными резисторами 500-600 Ом. Измеряем выходные напряжения. Если напряжения отличаются от расчетных, измерьте напряжение сети – возможно, оно сильно отличается от 220В. Проверяем работу устройства плавного запуска. Для этого подключаем авометр параллельно резистору R5. При включении блока прибор должен показать постоянное напряжение порядка 30В. Через одну-две секунды напряжение должно почти полностью исчезнуть. Параллельно конденсатору С2 можно включить варистор, например JVR-7N391K, или другой, на напряжение около 400В. Отверстия в печатной плате имеются. Блок защищен предохранителем 8А.

Литература:
«РАДИО» №1 1987г. стр.35-37

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 Микросхема К511ЛА1 1 В блокнот
DD2 Микросхема К511ТВ1 1 В блокнот
D1-D4 Диодный мост

BR1010

4 В блокнот
VT1 Биполярный транзистор

BU931P

1 В блокнот
VT2 Биполярный транзистор

КТ815Г

1 В блокнот
VT3 Биполярный транзистор

2N5551

1 В блокнот
VT4 Биполярный транзистор

2N5401

1 В блокнот
VT5, VT6 Биполярный транзистор

MJE13009

2 В блокнот
D5, D11, D12 Выпрямительный диод

HER108

3 В блокнот
D7-D10 Выпрямительный диод

1N4007

4 В блокнот
D13-D16 Диод

КД2997А

4 В блокнот
D17 Стабилитрон

КС515А

1 В блокнот
VD1 Тиристор BT151-800 1 В блокнот
C1 Конденсатор 1500 пФ 1 В блокнот
C2, C3 0.22мкФ 400В 2 В блокнот
C4 Электролитический конденсатор 2200мкФ 10В 1 В блокнот
C5, C9 Электролитический конденсатор 1мкФ 400В 2 В блокнот
C6 Электролитический конденсатор 470мкФ 100В 1 В блокнот
C7 Электролитический конденсатор 10мкФ 10В 1 В блокнот
C8 Электролитический конденсатор 150мкФ 400В 1 В блокнот
C10 Электролитический конденсатор 550мкФ 400В 1 В блокнот
C11 Электролитический конденсатор 100мкФ 25В 1 В блокнот
C12 Конденсатор 0.033 мкФ 1 В блокнот
C13 Конденсатор 0.1 мкФ 1 В блокнот
C14, C15 Электролитический конденсатор 4.7мкФ 250В 2 В блокнот
C16, C17 Электролитический конденсатор 4.7мкФ 160В 2 В блокнот
C18, C19 Конденсатор 0.22 мкФ 2 В блокнот
C20, C21 Электролитический конденсатор 10000мкФ 83В 2 В блокнот
R1 Переменный резистор 22 кОм 1 В блокнот
R2 Резистор

Импульсный блок питания, обеспечивающий двухполярное напряжение +/-50В мощностью до 300 Вт, предназначен для применения , либо лабораторных БП повышенной мощности (). Эта относительно простая схема импульсного БП собрана в основном из радиоэлементов взятых из старых блоков питания AT/ATX.

Принципиальная схема преобразователя 220/2х50В


Схема самодельного импульсного БП для УМЗЧ

Трансформатор инвертора был намотан на ферритовом сердечнике ETD39. Моточные данные практически не отличаются, только выходные обмотки немного домотаны под увеличение вольтажа. Транзисторы ключевые — мощные IRFP450. Драйвер — популярная микросхема TL494. Питание осуществляется через специальный стабилизатор. В нём резистор пусковой с выпрямленным напряжением сети заряжает конденсатор питания, на котором, когда напряжение достигнет порога, включится стабилизатор, запустив драйвер. Он будет питаться только в моменты накопления энергии на конденсаторе, а после запуска преобразователя, питание драйвера возьмет на себя дополнительная обмотка трансформатора. Принцип работы такого варианта запуска известен давно и используется в популярной м/с UC384x.


Печатная плата

Силовой каскад

Еще одна особенность схемопостроения БП — управление полевыми транзисторами. Тут нижний по схеме IRFP450 управляется прямо с выхода драйвера, а верхний с помощью небольшого трансформатора.

Кроме того, система была оснащена защитой по току, отслеживая ток нижнего полевика, используя его сопротивление Rdson .

Результаты испытания БП


Готовый блок питания — плата с деталями

На практике, удалось получить около 100-150 выходной мощности на 4 омных АС. Напряжение +/-50В выставляется резистором P1 10к. Конечно оно может принимать любые значения, в зависимости от применяемой схемы УНЧ. В настоящее время система работает в составе .

© 2024 spares4bmw.ru -- Автомобильный портал - Spares4bmw